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ABSTRACT

Anomaly detection has many applications ranging from bank-fraud detection and
cyber-threat detection to equipment maintenance and health monitoring. However,
choosing a suitable algorithm for a given application remains a challenging design
decision, often informed by the literature on anomaly detection algorithms. We
extensively reviewed twelve of the most popular unsupervised anomaly detection
methods. We observed that, so far, they have been compared using inconsistent
protocols — the choice of the class of interest or the positive class, the split of
training and test data, and the choice of hyperparameters — leading to ambigu-
ous evaluations. This observation led us to define a coherent evaluation protocol
which we then used to produce an updated and more precise picture of the rel-
ative performance of the twelve methods on five widely used tabular datasets.
While our evaluation cannot pinpoint a method that outperforms all the others on
all datasets, it identifies those that stand out and revise misconceived knowledge
about their relative performances.

1 INTRODUCTION

A tenet of scientific publications is that the published results should be fair, unambiguous, and re-
producible. However, there is an increasing awareness that this is not always the case in published
machine learning research [Gorman & Bedrick! (2019); |Agarwal et al.| (2021); [ Kadlec et al.| (2017);
Fourure et al|(2021); Musgrave et al.|(2020); Marie et al.| (2021)); Ratf] (2019). To illustrate, some-
times methods are compared while using inconsistent hyparameter tunings [Kadlec et al.| (2017);
Musgrave et al.| (2020) or misleading metrics Musgrave et al.[ (2020), resulting in unfair compara-
tive evaluations. Different choices for the anomaly class, differences in training protocol settings,
and different proportions of anomalies in the test set were also identified as leading to inconsistent
evaluations of machine learning models |Fourure et al.| (2021). Other studies, in deep reinforcement
learning for example [Agarwal et al.|(2021), stress the importance of considering the statistical un-
certainty uncured by comparing machine learning models on a small number of training runs, to
ensure reliable performance evaluations.

This paper analyses twelve of the most popular unsupervised anomaly detection methods. We show
that some of the issues raised by the abovementioned work also apply to the anomaly detection liter-
ature specifically. Anomaly detection algorithms attracted our attention because they are essential to
a wide range of applications, ranging from bank-fraud detection Zhu et al.| (2021) and cyber-threat
detection Tan et al.| (201 1)); [Schubert et al.| (2014) to equipment maintenance (Carvalho et al.| (2019)
and health monitoring [Wei et al.[(2018)).

An anomaly is an observation that deviates from what is deemed normal observations Ruff et al.
(2021). Anomaly detection algorithms are by nature classification algorithms and, like classification
methods in general, are grouped into parametric and nonparametric approaches [Ruff et al.| (2021));
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Kwon et al.| (2019); (Chalapathy & Chawlal (2019). Parametric approaches assume a model defined
by some parameters. Examples include decision-boundary learning methods, such as OC-SVM
Scholkopf et al.|(1999) and DeepSVDD Ruff et al.|(2018]), which learn a separation between normal
and abnormal samples; reconstruction methods, such as MemAE |Gong et al.|(2019) and DAE |Chen
et al. (2018)), which learn to reconstruct normal samples and classify samples that cannot be properly
reconstructed as anomalous; and probabilistic methods, like DAGMM [Zong et al.| (2018), which
learn the probability density function of the normal data. Nonparametric methods do not assume
any parametric model. They include distance-based methods, like LOF Breunig et al. (2000) and
RecForest Xu et al.| (2021), which learn to identify anomalies by their distance to normal samples,
given some distance-based metric.

The twelve anomaly detection methods we analyzed are: Deep Auto-Encoder |Chen et al.| (2018)),
NeuTraLAD Qmu et al.[ (2021), DAGMM [Zong et al.| (2018), SOM-DAGMM |Chen et al.| (2021)),
DUAD[Li et al.|(2021)), MemAE |Gong et al.| (2019), ALAD [Zenati et al.| (2018), DSEBM [Zhai et al.
(2016), DROCC |Goyal et al.| (2020), DeepSVDD Ruff et al.[(2018), LOF |Breunig et al.| (2000) and
OC-SVM Scholkopf et al.| (1999). After pointing to inconsistencies in published results for these
methods, we propose a rigorous evaluation protocol and apply it to reevaluate those methods on five
widely used tabular datasets: KDDCUP, NSL-KDD, CSE-CIC-IDS2018, Arrhythmia, and Thyroid.
The new evaluation shows that some methods, previously shown to perform better than others, do
not perform as well under our proposed protocol. We hope that the updated evaluation of anomaly
detection algorithms will better inform future design choices of anomaly detection methods and fu-
ture baselines for new method discoveries. We also believe that the adoption by authors of a coherent
evaluation protocol like the one we propose will contribute to remedying the increasing concern of
unfair, ambiguous, and difficult-to-reproduce experimental results in the machine learning literature.

2 ISSUES WITH EXISTING EVALUATIONS OF MACHINE-LEARNING-BASED
ANOMALY DETECTION ALGORITHMS

While reviewing the literature on machine-learning-based anomaly detection algorithms, we noticed
inconsistencies in protocols used to evaluate and compare different algorithms, especially for the
splitting between training and test datasets, the choice of performance metrics, and the threshold
used to flag anomalies. We also observed ambiguity in the definition of the positive class (i.e., the
class of interest) used for different models evaluations. As a result of these inconsistencies, it is
difficult to make sense of the experimental evaluations from one paper to another.

Data splitting. Different train-test data splits have been used while comparing the performances of
different algorithms. One must usually decide on the training and test sets splitting. In addition,
for anomaly detection, one must decide whether any of these two sets will contain normal data,
abnormal data, or both. Whatever the decision, it should be made consistently when evaluating
different algorithms. Otherwise, the comparisons of one paper to another are meaningless. It turns
out that, in the literature, the data split decisions are indeed inconsistent. As an example, to compare
different algorithms, some approaches split the data according to the following strategy |[Zong et al.
(2018)); [Zenati et al.| (2018)); |Bergman & Hoshen| (2020): the training dataset consists of 50% of
the normal data, whereas the test set consists of the remaining 50% normal data plus anomalies.
Based on this split, conclusions are made on the relative performance of different algorithms in the
literature. We call this the “Recycling strategy”.

In contrast, [Zhai et al.|(2016)) start with a set containing both the normal data and anomalies, splits
it evenly into two sets, then trains on a set that is one of the sets stripped of the anomalies, and
tests it on the other set. We refer to this as the “Discarding strategy”. At first glance, the Recycling
strategy and the Discarding strategy are similar in that training is done on normal data and testing
is done on a mix of normal and abnormal data. The subtle difference here is that now the test
set contains only half of the anomalies available in the original data. Considering that anomalies
are rare — they constitute a small percentage of the original dataset — that subtle difference could
have a significant impact on the testing performance |Fourure et al.| (2021). Put another way, the
two strategies could lead to different conclusions when comparing anomaly detection algorithms
on a dataset. For instance, Zenati et al.| (2018)) refer to measurements made by previous authors
using the Discarding strategy to compare against measurements made using the Recycling strategy
in their paper. We later demonstrate that this is misleading, as one might expect. Regardless of the
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inconsistent comparison, since anomalous data is typically scarce, we argue that it should always be
injected into the test set to evaluate the capacity of the model in detecting more anomalous signals.

The two data strategies above say nothing about the proportion of anomalous and normal data in the
test sets. Some authors fix that proportion to 50% — making the test set balanced, thereby introducing
a different test strategy |Goyal et al.|(2020). We call it the “Balanced test set strategy”. On the other
hand, while the three strategies discussed so far train only on normal data, methods have also been
proposed that train only on abnormal data. As an example, (Chen et al| (2021) use 50% of the
anomalies as the training set and the rest of the anomaly data plus normal data as the test set.

Performance metrics and threshold. Since most of the datasets in anomaly detection are imbal-
anced, precision, recall, and Fl-score are commonly used metrics to measure model performance
and benchmark models. These metrics are computed for a specific threshold in the anomaly detec-
tion task — different thresholds may yield different metric values. The work in [Fourure et al.| (2021)
demonstrates that the F1-score with a fixed threshold can be artificially manipulated by increasing
or decreasing the number of positive samples in the test set. Therefore, different anomaly ratios in
the test set lead to biased comparisons. Moreover, the threshold can be another factor for manip-
ulating performance measures. For instance, |[Zong et al.| (2018), Zenati et al.| (2018)) and Bergman
& Hoshen| (2020) set the threshold such that it returns the o*” percentile of anomaly scores, with
« being the ratio of normal data in the test set; whereas others, like Qiu et al.|(2021), search for an
optimal threshold, which results in the best performance the model could achieve. Evidently, using
different thresholds yields different results and performance comparison is only fair if the models
are evaluated using their respective optimal thresholds.

Class of interest (positive class). The choice of the positive class constitutes another source of
ambiguity. For instance, Zong et al|(2018) assign the positive class to the minority class (usually
anomalous data) whereas, in|Goyal et al.[(2020) and |Chen et al.[(2021), the positive class denotes the
majority class (normal data). However, with unbalanced data, the F1-score varies for class swapping
Chicco & Jurman| (2020). Therefore, evaluating the performance of a model on the majority class
gives it a clear advantage over those evaluated on the minority class.

Implementation details. Reproducibility in research allows double-checking findings and verifying
whether they are reliable. It also facilitates the integration of recent findings when constructing new
models. That said, reproducibility remains a challenge in the machine learning community, often
due to important missing details in the description of models or the training procedure [Pineau et al.
(2021). In our literature review on anomaly detection algorithms, we noted similar issues. For
instance, |Qiu et al.| (2021)) do not normalize values of features for some datasets, while [Zenati et al.
(2018)), Bergman & Hoshen| (2020)), Zong et al.| (2018) normalize values of attributes for all the
datasets. The lack of implementation details may engender serious hurdles in the advancement of
research in machine learning, in general; it reduces chances to reproduce results with sufficient
certainty and impedes effective and consistent performance comparisons between different models.

3  PROPOSED TRAINING AND EVALUATION PROTOCOL

In this section, we propose solutions for the issues identified in the previous section to ensure a fair,
reliable, and consistent evaluation, and comparison of anomaly detection algorithms.

3.1 DATA SPLIT

We propose to partition normal samples into a training and a test set following a 50-50 split using
random subsampling. It could also be fair to use another split ratio, as long as all the anomalies are
found exclusively within the test set. Given that anomalies are rare by nature and greatly influence
the performance metrics, they should be included only in the test set. Also, training on normal
data translates seamlessly to real-life applications where most of the data is assumed to be normal.
However, for ablation studies, it can be informative to insert a small portion of the abnormal samples
during training to study the algorithm’s sensitivity to corruption, i.e. how the presence of anomalies
in its training data affects its performance.

During our experiments, we trained and tested the models multiple times each. We kept the train-
test constant across all runs however it has been pointed out by Bouthillier et al.| (2021)) that varying
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sources of randomness give a better estimation of the performances. Thus, it would be recommend-
able to shuffle all the data before splitting it into the training and test set at the beginning of each
run.

3.2 CLASS OF INTEREST

In classification tasks, the class of interest, also called the positive class, is used as the basis for
evaluation. Given the large class imbalance in anomaly detection, our protocol defines the minority
class as the class of interest. By contrast, using the majority class gives overly optimistic scores and
masks the poor performance on the minority class. In most cases, the minority class corresponds to
the anomalies.

3.3 METRICS

We propose to use the following metrics to evaluate anomaly detection performance: F1-score, pre-
cision, recall, and area under the precision-recall curve (AUPR). AUPR was not used in any of the
analyzed papers. As previously mentioned, research shows how F1-score and AUPR are sensitive to
class imbalance Jenti et al.[(2013)); Tharwat|(2020) and can be manipulated by changing the anomaly
ratio in the test set [Fourure et al.| (2021). Our protocol mitigates this issue by considering all the
anomalies during testing. Thus, the anomaly ratio remains the same for all algorithms. While AU-
ROC is unaffected by skewness in the class distribution, it provides an optimistic view by giving
equal weights to predictions on both classes. The AUPR is more sensitive to predictions on the pos-
itive class (the anomalies), making it more informative for anomaly detection |Saito & Rehmsmeier
(2015). Also, AUPR and AUROC are not dependent on the choice of a specific threshold that can
prevent comparability |[Fourure et al.[(2021).

3.4 THRESHOLD

A threshold 7 must be set to identify anomalies and compute the performance metrics such as F1-
score, precision, and recall. Given a ratio of p anomalous samples in the test set and the array S
of generated scores on the entire test set, an intuitive strategy is to set 7 at the (1 — p)*" percentile
of scores S. We expect the lowest (or highest, depending on the meaning of the score) of (1 — p)t*
percentile to contain the anomalies because they should generate the lowest (or highest scores).
Another strategy is to find the optimal threshold, that is, the threshold that maximizes the F1-score.
Such a threshold is typically located in the neighbourhood of the (1 — p)** percentile of scores S.
We recommend the use of optimal thresholding for each model for a fair comparison.

As mentioned in the previous section, AUPR and AUROC are not dependent on the choice of a
specific threshold. When comparing methods to apply to a problem where the anomaly ratio is
unknown, these metrics are more informative than guessing the correct threshold. As such, these
metrics are more attractive to industry practitioners.

4 EXPERIMENTS

This section presents the datasets and the models used in our experiments along with implementation
details. We then discuss the results obtained using the evaluation protocol suggested in the previous
section.

4.1 DATASETS

Commonly used datasets in unsupervised anomaly detection are considered for this task. Table
summarizes the information of the different datasets.

* KDDCUP is a network intrusion detection dataset widely used as a benchmark in the lit-
erature. We use the 10 percent version which uses only 10 percent of the original KD-
DCUP dataset. It contains 34 continuous and 7 categorical variables that are one-hot en-
coded. The four different attack scenarios (DOS, R2L, U2R, and probing) are combined
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DATASET \ NUMBER OF SAMPLES (N) \ NUMBER OF FEATURES (D) \ ANOMALY RATIO (p)
ARRHYTHMIA 452 274 0.1460
CSE-CIC-IDS2018 16 232 944 83 0.1693
KDD 10% 494 021 42 0.1969
NSL-KDD 148 517 42 0.4811
THYROID 3772 6 0.0246

Table 1: General information on the datasets.

into a single “attack” class. After manipulations, we drop the num_outbound_cmds and
is_host_login columns because they both have a single value.

¢ NSL-KDD, provided by the Canadian Institute of Cybersecurity (CIC) (CIC, b)), attempts
to solve the inherent statistical flaws in KDDCUP (see Tavallaee et al.| (2009) for more
details) by removing most of the duplicate entries. The result is a much smaller training set
with the same variables. The preprocessing steps is identical to KDDCUP. However, the
column is_host_login is kept because it contains more than one value.

* CIC-CSE-IDS2018. This dataset is also provided by CIC. It simulates a complex enter-
prise network through virtual machines subject to seven different attack scenarios, namely
Brute-force, Heartbleed, Botnet, DoS, DDoS, Web attacks, and infiltration of the network
from inside (CIC| |a). Data cleaning for this dataset replicated the methodology described
in|Leevy et al|(2021). Attacks are once again combined into a single class.

* Thyroid. This classification dataset taken from the ODDS repository (ODDS, b)) has three
classes but, for the outlier detection task, only the hyperfunction class is treated as the
outlier. The other two classes are treated as normal. The attributes are homogeneous and
there is no missing or invalid data in this dataset.

» Arrhythmia. This multi-class classification dataset, also obtained from the ODDS reposi-
tory (ODDS] |a), combines multiple classes (3, 4, 5, 7, 8, 9, 14, and 15) to form the outlier
class while the remaining classes are considered as the normal class. Like Thyroid, our
data cleaning pipeline didn’t modify the original data.

Min-Max scaling was applied to all the features of the aforementioned datasets. Applying Min-Max
scaling on one-hot encoded features has no effect.

4.2 MODELS

Our study compares the performance of 9 recent deep unsupervised learning algorithms tailored for
anomaly detection, namely: DAGMM Zong et al.|(2018)), ALAD|Zenati et al.| (2018), MemAE|Gong
et al.|(2019), DSEBM [Zhai et al.| (2016) represented with its two alternative versions DBSEM-e and
DBSEM-r, DROCC |Goyal et al.| (2020), DeepSVDD Ruff et al.|(2018), SOM-DAGMM [Chen et al.
(2021), DUAD |Li et al.[(2021) and NeuTraLAD Qiu et al.| (2021). They were chosen based on their
performances and the diversity of approaches. We complement our comparison with two popular
baseline methods: OC-SVM |Scholkopf et al.| (1999), LOF Breunig et al.| (2000) and a vanilla Deep
Auto Encoder (DAE) |Zhou & Paffenroth|(2017).

Deep learning methods are implemented using PyTorch and optimized by the Adam algorithm with
a learning rate of 1le—4, and training consists of 20 runs. Mini-batch sizes for Arrhythmia, Thyroid,
KDD, NSL-KDD, and CSE-CIC-IDS2018 are set to 128, 128, 1024, 1024, and 1024 respectively.
The author’s PyTorch versions of DeepSVDD, DROCC, and MemAE are integrated into our code-
base. For ALAD, we had to convert the original TensorFlow codebase into PyTorch. Scikit-Learn’s
LOF and OC-SVM implementations are used [Pedregosa et al.[(2011). Finally, the remaining algo-
rithms (DAGMM, DUAD, SOM-DAGMM, DSEBM, NeuTraLAD) are completely reimplemented
because no public repository was made available by the authors. Our code is available on Githutﬂ

Yireydiak/anomaly_detection NRCAN (github.com)
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KDDCUP 10 NSL-KDD CSE-CIC-IDS2018
Precision Recall Fq Precision Recall Fq Precision Recall Fq
ALAD 95.1£0.5 96.6+1.0 95.940.7 93.6+1.0 90.7+1.9 92.1£1.5 58.940.7 592402 59.04+0.0
DAE 932413 932426 93.242.0 97.04+0.1 95.3+0.2 96.1+0.1 67.940.4 75.6+0.7 71.5+0.5
DAGMM 93.6+0.9 98.4+19 959+1.4 89.3+5.5 81.84+9.0 853+74 48.4+4.1 65.9+7.3 55.84+5.3
DeepSVDD 90.84+2.0 87.6+£2.0 89.14+2.0 89.442.0 89.242.0 89.3+2.0 20.7+11 20.8+11 20.8+11
DROCC 84.040.0 99.640.0 91.140.0 90.44+0.0 90.54+0.0 90.440.0 29.6+0.0 99.6+0.0 45.6+0.0
DSEBM-e 95.740.1 97.610.1 96.6+0.1 95.54+0.1 93.740.1 94.610.1 45.140.7 42.740.8 439408
DSEBM-r 96.6+0.1 99.440.1 98.0+0.1 96.2+.0.1 94.940.1 95.540.1 42.240.1 39.340.1 40.740.1
DUAD 94.04+0.7 99.1+1.4 96.5+1.0 96.0+0.1 93.240.3 94.540.2 68.1+3.5 75.84+2.4 71.8+2.7
MemAE 93.0+1.2 97.14+2.2 95.0+1.7 96.0+0.0 95.14+0.1 95.61+0.0 60.84+0.1 59.040.2 59.940.1
NeuTraLAD 93.1+0.3 99.740.1 96.410.2 96.5+0.4 95.6+0.2 96.0+£0.1 54.6+8.2 65.6+9.8 59.5+89
SOM-DAGMM 95.7£0.7 99.8+0.2 97.7£0.3 94.4+1.0 96.8+0.8 95.6+0.3 48.6+1.2 40.34+0.9 44.1£1.1
LOF 93.0£0.0 97.240.0 95.1£0.0 88.6+£0.0 93.610.0 91.1£0.0 75.6£0.0 55.1£0.0 63.8+0.0
OC-SVM 94.240.0 99.4+0.0 96.7£0.0 91.540.0 94.540.0 93.0£0.0 92.5+0.0 30.6£0.0 45.4£0.0

(a) Performance metrics on cybersecurity datasets.

Arrhythmia Thyroid
Precision Recall Fq Precision Recall Fq
ALAD 59.5+0.1 555408 57.4+0.4 61.5+£0.9 774£0.8 68.6+0.5
DAE 62.1£2.0 60.942.2 61.5+£2.5 54.4+44 65.5+5.7 59.0£1.5
DAGMM 51.4+£39 50.0£6.1 50.6+£4.7 51.3+72 46.3+8.8 48.6+8.0
DeepSVDD 56.4£2.0 54.7+£3.0 55.5+£3.0 13.0£13 24.7+£30 13.1£13
DROCC 263+£3.6 61.8£15 358+2.6 51.84£9.0 77.6£11 62.1£10
DSEBM-e 61.9+1.0 58.1+£1.6 59.9+1.0 26.0+£0.9 22.0£0.6 23.84+0.7
DSEBM-r 61.8+1.1 584+£1.3 60.1£1.0 25.840.3 21.8+0.4 23.6+£0.4
DUAD 58.6+£0.4 63.2+1.2 60.8+0.4 123420 19.1£1.6 14.9+£5.5
MemAE 63.1+2.1 62.1+1.5 62.6+1.6 53.440.5 59.1+0.5 56.1£0.9
NeuTraLAD 58.5+5.5 63.6+5.3 60.7+3.7 68.9+0.7 78.5+0.5 73.440.6
SOM-DAGMM 51.0+5.9 532475 519459 61.2+11 49.0+14 527412
LOF 57.1+0.0 66.740.0 61.54+0.0 63.040.0 75.240.0 68.61+0.0
OC-SVM 57.34+0.0 71.240.0 63.51+0.0 69.6+0.0 66.6+0.0 68.14+0.0

(b) Performance metrics on medical datasets.

Table 2: Average Precision, Recall, and F1-Score (all with standard deviation) of the twelves models trained
exclusively on the normal data.

KDD10 NSL-KDD CSE-CIC-IDS2018

AUROC AUPR AUROC AUPR AUROC AUPR
ALAD 99.0£0.2 953+£1.1 93.9+1.8 94.8+1.7 85.61+2.1 61.5£5.8
DAE 98.240.0 94.74£0.1 98.5£0.2 99.2+0.1 88.2+1.8 68.9+£2.5
DeepSVDD 99.440.2 97.1£1.0 93.1£3.0 953£1.0 62.0+7.4 242480
DROCC 97.540.0 93.240.0 94.440.0 97.240.0 51.140.0 29.640.0
DSEBM-¢ 98.6£0.1 93.940.5 98.0£0.0 99.040.0 70.740.2 38.140.1
DSEBM-r 99.040.0 95.6+0.2 98.3£0.0 99.140.0 72717 39.8+1.3
DAGMM 99.140.3 97.3+0.6 94.0£3.6 96.542.0 66.74+8.3 50.849.5
DUAD 98.3+1.0 932435 97.440.1 98.640.1 82.942.3 53.040.1
MemAE 98.240.2 94.7+0.6 97.940.1 98.9£0.1 65.8+2.0 56.642.0
NeuTraLAD 98.84+0.1 97.04+0.1 98.7+0.1 99.240.1 81.5+5.6 59.64+6.9
SOM-DAGMM 98.940.2 95.84+1.3 98.61+0.2 99.240.1 67.9+6.4 532424
LOF 91.140.0 89.940.0 91.1£0.0 89.940.0 83.4+0.0 72.7£0.0
OC-SVM 98.8+0.0 94.940.0 96.5£0.0 96.4£0.0 64.6+0.0 48.240.0

(a) AUROC and AUPR scores on cybersecurity datasets.

Arrhythmia Thyroid
AUROC AUPR AUROC AUPR
ALAD 78.7+1.3 62.0£1.6 85.74+3.9 59.9+4.8
DAE 81.71+0.6 67.5+0.9 95.14+0.8 5424311
DAGMM 68.9+2.9 458452 843426 37.8459
SOM-DAGMM 70.3+5.0 48.7+6.9 85.04+7.1 46.7+13
DUAD 81.240.4 66.81+0.4 43.0+0.3 4.6+0.5
MemAE 80.940.1 67.51+0.1 89.8+4.6 32.747.0
DeepSVDD 79.44+0.8 62.51+0.6 83.7+14 51.6£18
DROCC 64.0£4.3 30.8+£3.9 95.6+3.8 68.9+£15
DSEBM-e 80.110.2 67.0£1.0 85.1£0.2 243£0.6
DSEBM-r 80.412.2 66.9£2.0 85.6+0.1 25.0£0.6
NeuTraLAD 78.9+2.6 63.4+3.3 98.242.2 73.9+29
LOF 81.3+0.0 67.0£0.0 97.240.0 72.240.0
OC-SVM 80.0+0.0 64.0£0.0 96.9+0.0 61.4£0.0

(b) AUROC and AUPR on medical datasets

Table 3: Average AUROC and AUPR (all with standard deviation) of the twelves models trained exclusively
on the normal data.
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Arrhythmia Thyroid

Zhai et al., 2016
Zong etal., 2018
Our results

ong et al., 2018
results

0C-svM

DSEBM-r

(a) On Arrhythmia. (b) On Thyroid.

Figure 1: Reported F1-scores for OC-SVM and DSEBM-r by different authors.

4.3 RESULTS

We now highlight the different results using our experimental protocol. Recall, precision, and F1-
score are presented in Table[2] Table [3|displays the AUPR results.

Important differences with reported results. We first note significant differences in reported pre-
cision, recall, and F1-scores between a few models. (2018)) report an F1-score of 0.0403
and 0.1510 for DSEBM-r on Arrhythmia and Thyroid respectively, while the original authors of the
method [Zhai et al.| (2016)) obtained 0.8386 on Thyroid. Our results are quite different from both pa-
pers: 0.601 and 0.236 on Arrhythmia and Thyroid respectively. Results on baseline models also vary
greatly. Figures[Taand[Tb] summarize these discrepancies. It’s unclear whether the experiments in-
tegrated all anomalies during testing or if some of them were left out during the subsampling phase.
This would explain the large differences. Zenati et al.|(2018)) and |Gong et al.[(2019) cite the results
from [Zong et al.| (2018) on these models. Interestingly, the DSEBM implementation described in
Zenati et al. (2018), available on Githulﬂ generates results very different from those reported in
Zenati et al.|(2018)). They are, in fact, more in line with our scores.

Taking the majority class as the class of interest yields overly optimistic results. As displayed
in Figures 2a] and [2b] results on DROCC and SOM-DAGMM differ significantly when considering
the minority class as the class of interest. Results drop from 0.78, 0.69 to 0.485 (-0.295) and 0.317
(-0.3729) on Thyroid and Arrhythmia respectively for DROCC. Similarly, our protocol generates
0.471 and 0.602 on the same datasets compared to 0.9053 (-0.4343) and 0.9888 (-0.3868) reported
by SOM-DAGMM. Emphasizing predictions on the normal class can be misleading when dealing
with skewness in class distribution. The probability of misclassification is much lower given their
large number in the dataset. Conversely, anomalies are more challenging to detect as they are less
frequent.

Arrhythmia Thyroid

= Before
- After

DROCC DROCC

SOM-DAGMM SOM-DAGMM

0.0 01 02 03 0.4 05 06 07 08 09 10
Flosc

(a) On the Arrhythmia dataset. (b) On the Thyroid dataset.

Figure 2: F1-score computed on different classes of interest.

houssamzenati/Adversarially-Learned-Anomaly-Detection (github.com)
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Report both precision and recall scores for better interpretability. Most research papers re-
viewed display both recall and precision scores, but too many still report only the F1-score. F1-
score is the harmonic mean between precision and recall. Therefore, a good score can mask a poor
recall with excellent precision or vice versa. For instance, DROCC’s excellent 0.996 recall score
on CSE-CIC-IDS2018 indicates that the model doesn’t miss a lot of anomalies (low false-negative
rate), but its 0.296 precision suggests it often flags normal samples as anomalies (high false-positive
rate). This observation is not possible using only the F1-score (0.456).

AUPR is more informative than AUROC. The differences between AUROC and AUPR for all
the models on the KDD and NSL-KDD are negligible. However, they differ significantly on CSE-
CIC-IDS2018 where we see a significant drop (over 10%) in performance between the two metrics.
DAE drops from 0.882 to 0.689, DSEBM-r from 0.727 to 0.398 and ALAD from 0.856 to 0.615 to
name a few. This further demonstrates our case that AUROC gives an optimistic perspective on a
classifier’s performance by giving equal weights to predictions on abnormal and normal instances.
In anomaly detection, we are interested in the performance on the anomalies and so it makes sense
to use a metric more sensitive to predictions on that class.

Testing on KDD is insufficient. KDD and its 10 percent variant NSL-KDD should only be used
as a kind of basic sanity check since they do not provide distinctive insights into the performance
of the methods. All implemented models — both deep and shallow — perform exceptionally well on
this dataset, with Fl-scores above 0.90. We can therefore conclude that KDD is highly trivial for
anomaly detection. Instead, datasets such as CSE-CIC-IDS2018 should be preferred for comparison
in the area of network intrusion detection, as most models report poor performance and results vary
considerably on this more challenging dataset. Also, CSE-CIC-IDS2018 simulates a more realistic
network, unlike KDD which was built over 20 years ago.

Summary. Among the surprising results, we note that our vanilla auto-encoder DAE outper-
forms more sophisticated reconstruction-based methods like DAGMM and MemAE on CSE-CIC-
IDS2018. The large number of samples and intra-class variation on the same dataset could explain
the downfall of DeepSVDD, DROCC, and one-class classification approaches in general. More
generally, baseline methods with optimized hyper-parameters achieve more competitive F1-scores
than reported in the literature so far. On Arrhythmia and Thyroid, they even outperform most of
their deep-learning counterparts. NeuTraLAD, the transformation-based approach, offers consis-
tently above-average performance across all datasets. The data-augmentation strategy is particularly
efficient on small-scale datasets where samples are scarce. The only adversarial approach (ALAD)
does not distinguish itself significantly from the other reconstruction-based methods, which is to be
expected since it uses a reconstruction objective as its core.

5 CONCLUSION

In this paper, we emphasize the importance of using a reliable evaluation protocol to assess anomaly
detection methods, revealed inconsistencies in reported results and claims, proposed a consistent
evaluation protocol, and provided an updated evaluation of the twelve popular unsupervised anomaly
detection methods on five widely used tabular datasets. The results reported in this paper give a better
understanding of the current standing of the various unsupervised anomaly detection methods for
tabular data.

We addressed the sources of inconsistencies in the evaluation protocols and offered a solution for
each. We solve the data split problem by training on normal data only and using all of the anomalous
samples in the test set. We discussed how the choices of performance metrics must be mindful of
the imbalance in typical anomaly detection datasets. We advocate for the F1-score, precision, recall,
and AUPR metrics to be reported to give a better picture of the performances of each method. The
strategy for choosing the threshold for classification must be the same in all the evaluated methods,
which we fixed to using the optimal threshold. We also mentioned how the choice of the class of
interest can skew the evaluations and we set it to be the minority class. Finally, implementation
details are vital to reproduce results.

We consider these results as preliminary and hope to extend our study to non-tabular data, espe-
cially time series and image datasets. We also hope that future work can compare their empirical



ML Evaluation Standards Workshop at ICLR 2022

results with ours following the same evaluation protocol and ultimately improve the consistency and
reliability of future comparisons.
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APPENDIX

A MODELS DESCRIPTION

We chose a set of methods from highly cited papers published between 2016 and the time of this
publishing and models considered as baseline. We chose baseline models based on the reputation of
their paper, number of citations and number of times they are considered as baseline. We also include
more recent models that claim state-of-the-art performance on a subset of the datasets previously
described.

Deep Structured Energy Based Models for Anomaly Detection Zhai et al.[ (2016). DSEBM
performs density estimation through energy-based models. The energy function is composed of
neural networks and energy is accumulated across the multiple layers [Zenati et al.| (2018). Two
different anomaly scores are studied: reconstruction error (DSEBM-r) and energy score (DSEBM-

e).

Deep Auto Encoding Gaussian Mixture Model |Zong et al.| (2018). DAGMM trains an autoen-
coder and a feed-forward network in an end-to-end fashion. The reconstruction error and the latent
representation produced by the autoencoder are given as input to a MLP which is used to estimate
the parameters of a Gaussian Mixture Model (GMM). The output of the later network is ultimately
used to compute the log-likelihood of the samples, which is then used as an anomaly score. While
no official code is available for this model, the original paper provided enough information for us to
reimplement it.

Memory-augmented Deep Autoencoder |Gong et al. (2019). MemAE leverages the represen-
tational potential of an encoder with a memory module with a sparse attention-based addressing
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mechanism to record the prototypical patterns in the data. A decoder is used to reconstruct the
original sample from the items retrieved from the memory module. High reconstruction errors are
associated with anomalies. We reused the implementation offered by the authors on Github.

Deep One-Class Classification |[Ruff et al.[(2018). DeepSVDD leverages the representational po-
tential of deep neural networks to learn a representation of the data that encompasses a hypersphere.
By minimizing the volume of this hypersphere,the network is encourage to extract the common fac-
tors of variation in the training data. Points outside the hypersphere are predicted as anomalies.
Fortunately, a PyTorch implementation is made available by the authors.

Deep Robust One-Class Classification |Goyal et al.| (2020). DROCC assumes that the normal
points lie on a low-dimensional manifold that is well sampled. Based on this assumption, the authors
develop a method that can train deep neural network architecture by generating anomalous points.
For each normal point, gradient ascent is used to generate anomalous points that maximize the loss
of the network. Using this adversarial approach, DROCC is able to synthetically generate data
to train the DNN architecture in a supervised manner. We integrated the authors’ PyTorch code
(https://github.com/microsoft/EdgeML/).

Aversarially Learned Anomaly Detection |Zenati et al. (2018). ALAD expands on the GAN
foundations by adding an encoder to map data points to the latent space, and two more discriminators
to ensure data-space and latent-space cycle-consistencies. ALAD uses the reconstruction error based
on features extracted from an intermediate layer of a discriminator as the anomaly score.

Neural Transformation Learning for Deep Anomaly Detection Beyond Images Qiu et al.
(2021). NeuTraLAD leverages the recent success of contrastive learning in images and adapts it to
tabular data. It uses a data augmentation scheme with a deterministic contrastive loss. This scheme
encourages transformed samples to be similar to the original input while encouraging dissimilarity
between the transformed samples. Instead of using predefined transformations (such as rotation,
translation, cropping, etc.) that are well-suited for computer vision tasks, NeuTraLAD learns the
data transformations with a set of neural networks.

The previous SOTA methods are complemented with two of the most recurring baseline methods
found within the anomaly detection literature.

One-Class SVM |Scholkopf et al.| (1999). OC-SVM is a popular one-class classification SVM
algorithm used for anomaly detection. We used the Scikit-Learn implementation and experimented
on different v. The other parameters were set as defaults.

Local Outlier Factor Breunig et al.|(2000). LOF classifies samples with substantially lower density
than their neighbors as anomalies. The Scikit-Learn version was again used with optimized values
for n_.neighbors.

B HYPERPARAMETERS

In this appendix we describe the hyperparameters used to obtain the reported results.

ALAD
Batch Epoch Lat. dim. Weight decay Learning rate
Arrhythmia 128 10000 32 0.0001 0.0001
Thyroid 128 20000 32 0.0001 0.0001
KDDCUP 10 1024 100 32 0.0001 0.0001
NSL-KDD 1024 200 32 0.0001 0.0001
CSE-CIC-IDS2018 1024 150 32 0.0001 0.0001

Table 4: ALAD hyperparameters.
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DAE
Batch Epoch Lat. dim. Learning rate
Arrhythmia 128 10000 3 0.0001
Thyroid 128 5000 2 0.0001
KDDCUP 10 1024 100 2 0.0001
NSL-KDD 1024 100 2 0.0001
CSE-CIC-IDS2018 1024 100 2 0.0001

Table 5: DAE hyperparameters.

DAGMM
Batch Epoch Lat. dim. Learning rate Weight decay
Arrhythmia 128 10000 2 0.0001 0.0001
Thyroid 128 5000 2 0.0001 0.0001
KDDCUP 10 1024 200 1 0.0001 0.0001
NSL-KDD 1024 200 1 0.0001 0.0001
CSE-CIC-IDS2018 1024 100 1 0.0001 0.0001

Table 6: DAGMM hyperparameters.

DSEBM
Batch Epoch Lat. dim. Learning rate Weight decay
Arrhythmia 128 10000 2 0.0001 0.0001
Thyroid 128 5000 2 0.0001 0.0001
KDDCUP 10 1024 100 512 0.0001 0.0001
NSL-KDD 1024 100 512 0.0001 0.0001
CSE-CIC-IDS2018 1024 100 512 0.0001 0.0001

Table 7: DSEBM hyperparameters.

DeepSVDD
Batch size Number of output features
Arrhythmia 128 64
Thyroid 128 1
KDDCUP 10 1024 29
NSL-KDD 1024 31
CSE-CIC-IDS2018 1024 16

Table 8: DeepSVDD hyperparameters.

DROCC
Batch size Threshold Radius I v Learning rate Only CE epochs Gradient ascent steps
Arrhythmia 256 70 16 0.5 0.1 0.01 50 50
Thyroid 256 95 0.5 1.0 0.01 0.0001 50 50
KDDCUP 10 1024 61 16 0.5 0.1 0.01 50 50
NSL-KDD -1 35 16 0.5 0.1 0.01 50 50
CSE-CIC-IDS2018 100 2 8.124 1.0 0.01 0.0001 50 50

Table 9: DROCC hyperparameters.

DUAD
Batch Epoch Lat. dim. s j 20 Ps Clusters Learning rate
Arrhythmia 128 5000 3 10 35 30 8 0.0001
Thyroid 128 5000 2 10 35 30 8 0.0001
KDDCUP 10 1024 100 2 10 35 30 10 0.0001
NSL-KDD 1024 100 2 10 35 30 10 0.0001
CSE-CIC-IDS2018 1024 100 2 10 35 30 15 0.0001

Table 10: DUAD hyperparameters.

MemAE
Batch Epoch Lat. dim. Mem. dim. Weight decay Learning rate
Arrhythmia 128 10000 3 50 0.0001 0.0001
Thyroid 128 20000 3 50 0.0001 0.0001
KDDCUP 10 1024 200 3 50 0.0001 0.0001
NSL-KDD 1024 200 3 50 0.0001 0.0001
CSE-CIC-IDS2018 1024 50 3 250 0.0001 0.0001

Table 11: MemAE hyperparameters.
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NeuTraLAD
Batch Epoch Lat. dim. Learning rate ‘Weight decay Transformation type
Arrhythmia 128 200 32 0.0001 0.00001 residual
Thyroid 128 580 24 0.0001 0.00001 residual
KDDCUP 10 1024 40 32 0.0001 0.00001 multiplicative
NSL-KDD 1024 40 32 0.0001 0.00001 multiplicative
CSE-CIC-IDS2018 1024 25 32 0.0001 0.00001 multiplicative

Table 12: NeuTraLAD hyperparameters.

SOM-DAGMM
Batch Epoch Lat. dim. Learning rate
Arrhythmia 128 10000 2 0.0001
Thyroid 128 5000 1 0.0001
KDDCUP 10 1024 100 2 0.0001
NSL-KDD 1024 100 2 0.0001
CSE-CIC-IDS2018 1024 100 2 0.0001

Table 13: SOM-DAGMM hyperparameters.

OC-SVM LOF
Threshold v Threshold Number of neighbors
Arrhythmia 73 0.40 75 50
Thyroid 97 0.05 96 20
KDDCUP 10 78 0.25 77 100
NSL-KDD 46 0.40 44 20
CSE-CIC-IDS2018 86 0.01 88 15

Table 14: OC-SVM and LOF hyperparameters.
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