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ABSTRACT

Classifier calibration has received recent attention from the machine learning
community due both to its practical utility in facilitating decision making, as well
as the observation that modern neural network classifiers are poorly calibrated.
Much of this focus has been towards the goal of learning classifiers such that their
output with largest magnitude (the “predicted class”) is calibrated. However, this
narrow interpretation of classifier outputs does not adequately capture the variety
of practical use cases in which classifiers can aid in decision making. In this work,
we argue that more expressive metrics must be developed that accurately measure
calibration error for the specific context in which a classifier will be deployed. To
this end, we derive a number of different metrics using a generalization of Expected
Calibration Error (ECE) that measure calibration error under different definitions
of reliability. We then provide an extensive empirical evaluation of commonly
used neural network architectures and calibration techniques with respect to these
metrics. We find that: 1) definitions of ECE that focus solely on the predicted
class fail to accurately measure calibration error under a selection of practically
useful definitions of reliability and 2) many common calibration techniques fail to
improve calibration performance uniformly across ECE metrics derived from these
diverse definitions of reliability.

1 INTRODUCTION

Classification is arguably the most widely-studied problem in machine learning with applications
ranging from medical diagnosis to visual object identification in autonomous vehicles. Despite
the variety of classification tasks, the definitions of common evaluation metrics are often based on
the assumption that model outputs will be used in specific ways (i.e. a particular decision rule),
and such assumptions affect how a classifier’s “predictive” performance is measured. In practice,
classifier outputs are often consumed by either a human (such as for diagnosis in medical care (Jiang
et al., 2012)) or higher-level reasoning algorithms (such as for pedestrian detection in autonomous
vehicles (Yurtsever et al., 2020)). In these settings, classifiers are called upon to inform complex and
task-specific decision processes. Learning a classifier that can express not just class “predictions”,
but confidence associated with classes, is one way to better inform downstream decision making. For
example, a clinician can order additional lab tests to clarify their diagnosis if a classifier strongly
predicts an unexpected condition. Similarly, a self-driving system can defer to higher resolution
sensors if a vision based classifier is uncertain whether an object in the road is a pedestrian.

Both because of the practical utility in estimating classifier confidence, and the observation that
modern neural network classifiers often fail to do so accurately (Guo et al., 2017), there has been
a recent focus on classifier calibration – the problem of learning probabilistic classifiers whose
confidence outputs match the empirical distribution of observed class labels. This interpretation of
class probabilities enables the formal analysis of how well a classifier models true distributions over
events. Because of this, the term calibration is often used interchangeably with reliability (Bröcker,
2008). While this focus has revitalized the study of classifier calibration, metrics used to evaluate
calibration techniques, such as the popular Expected Calibration Error (ECE) (Naeini et al., 2015),

1



ML Evaluation Standards Workshop at ICLR 2022

presuppose a specific interpretation of classifier outputs. Most notably, it has become common to
evaluate classifier calibration using metrics that measure error for only the most probable classifier
output. While such an evaluation may be adequate in certain cases, when more than a single output is
used in decision making, metrics derived from broader definitions of reliability may be required.

We argue that in order to meaningfully evaluate calibration, there must be a focus on the context
in which a classifier is deployed. More specifically, the practical assessment of calibration requires
consideration for isolated cases that are of interest in the particular application of the classifier (such
as high-risk scenarios), and how classifier outputs are consumed. This necessitates metrics that map
to a variety of definitions of reliability for the purpose of context-specific evaluation of classifier
calibration.

Recognizing this need, this work contributes the following:

1. We reframe the generalized form of the expected calibration error introduced in Vaicenavi-
cius et al. (2019) as a set of modular components.

2. Within this framework, we discuss how common components from prior work map to
classifier use cases and introduce novel ones that result in metrics that more specifically
target other use cases.

3. We extensively evaluate a survey of classifier calibration techniques and find that many
perform inconsistently when evaluated against the diverse set of ECE metrics derived from
different definitions of reliability.

Through our evaluation we find that 1) relative performance as measured by traditional ECE metrics
does not correspond to relative performance as measured by different context-specific metrics 2)
many common calibration methods that reduce traditional ECE over baselines do not uniformly
reduce variants of the generalized ECE metric better suited for different contexts. We believe this
provides strong motivation for more focused calibration evaluation. In addition, we believe that by
posing ECE metrics as modular measures that can be adapted, we provide practitioners with the tools
they need to properly evaluate their classification models for the context in which they will be used.

2 RELATED WORK

Much of the recent focus on classifier calibration from the machine learning community can be
attributed to the observation that modern deep neural network classifiers are overconfident. Namely,
Guo et al. (2017) provided an empirical evaluation showing that common network architectures
trained using standard training procedures produce models that place an incorrectly high amount of
probability on a single class, and that simple techniques can often reduce this effect. As such, the
authors used a form of ECE in their evaluation that measures the miscalibration of the most probable
class output by the classifier, a choice mirrored in a number of subsequent works (Thulasidasan et al.,
2019; Müller et al., 2019; Mukhoti et al., 2020; Alexandari et al., 2020). In the multi-class setting,
such a metric makes practical sense when only the confidence of the most probable class (i.e. the
“prediction”) is considered in downstream reasoning. However, a probabilistic classifier’s output is a
distribution over all classes and can be interpreted in a number of ways not captured by this “Top-1”
ECE. In this work, we investigate ECE metrics that assume different definitions of reliability and
deployment contexts, and show how such assumptions affect classifier evaluation.

Two recent works, Ovadia et al. (2019) and Nixon et al. (2019), also sample the state of the art in
calibration and evaluate them on a variety of data sets and neural network architectures. The former
focuses on evaluating techniques under data set shift, which we do not consider in this work. The
latter focuses on addressing issues with computing the ECE metric itself, while our work focuses on
expanding ECE to different contexts.

A number of alternatives to ECE have been used to measure calibration performance of classifiers.
Brier score (Brier et al., 1950) and negative log likelihood (Lakshminarayanan et al., 2017) have
desirable properties associated with being proper scoring rules, but do not directly capture the concept
of calibration error. Other metrics such as Maximum Mean Calibration Error (Widmann et al., 2019)
and Kernel Calibration Error (Kumar et al., 2018) are more explicit in defining calibration targets
to measure error. These were largely developed as alternatives to ECE to address the difficulty of
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estimating expectation using histogram binning. We discuss this issue in Section B of the appendix,
and provide some practical intuition on how to alleviate it.

We adopt the Generalized Expected Calibration Error (GECE) framework proposed in Vaicenavicius
et al. (2019). Here, the authors propose a theoretical framework that introduces the concept of a
calibration lens as a means to formally define the relationship between a reliability condition and an
ECE metric. While they also sketch out the formalism for a few potentially useful lenses, such as
the “Top-k” and “Grouping” lenses discussed in Section 4.2, they mainly use the concept of a lens
to relate a “canonical” reliability condition to the Top-1 reliability condition. In this work we use
the GECE framework as a means to realize a variety of methods for evaluating classifier calibration.
In Section 3.2 we reframe GECE into a set of modular components, which we use to introduce a
number of distance functions and selection operators that map to practical classifier use cases. As
such, this work can be seen as a natural extension of the original GECE work to evaluate the practical
considerations and effects of using GECE to derive metrics for context-specific calibration evaluation.

3 PRELIMINARIES

3.1 RELIABILITY CONDITIONS

Let X be a domain of instances and Y be a set of k classes. Let p (X ∈ X , Y ∈ Y) be a
joint distribution over instances and classes, and similarly let p (Y |X) = p (X,Y ) /p (X) be
a conditional distribution over classes given an instance. The goal of probabilistic classifica-
tion is to find a classifier g : X 7→ ∆k−1 that estimates p (Y |X) given a set of finite sam-
ples Dtrain = {(x1, y1) , ..., (xn, yn)}∼ p (X,Y ). Here, we assume for concreteness that ĝ
outputs the predicted distribution over classes in the form of vectors in the probability simplex
∆k−1 =

{
s ∈ [0, 1]k :

∑k
i=1 si = 1

}
, and labels y are represented by one-hot encodings y, except

in the binary (k = 2) case where g(x) ∈ [0, 1] and y = y ∈ {0, 1}. In many cases, it is impossible to
learn a classifier that recovers p (Y |X) exactly. However, even though learned models imperfectly
estimate this distribution, it is still desireable that classifier outputs can be interpreted as accurate
estimates of confidence in an instance’s class.

One way to formalize this is through a calibration or reliability condition (Murphy & Winkler, 1987);
the most general of which is the Canonical or Full reliability condition:

P (Y |g (x)) = g (x) (1)

This condition specifies that the distribution over classes, conditioned on the classifier’s output,
is equal to the classifier’s output. For example, for all (x, y)∼ P (X,Y ) in which g(x) outputs
[0.7, 0.2, 0.1], 70% of the time y is class 1, 20% of the time it is class 2, and 10% of the time it is
class 3. For problems with many classes, satisfying the full reliability condition is often unnecessary
to facilitate practical classifier use cases. As a result, often weaker conditions are considered, such as
the Top-1 condition:

P
(
Y = arg max

y
g(X)|max g (X)

)
= max g (X) (2)

Here, only the maximum output of the classifier is considered. A perfectly calibrated classifier
under this condition would predict the correct class by the max output decision rule 70% of the
time when it’s maximum output is 0.7. In general, a classifier that satisfies one reliability condition
does not imply that it satisfies another. A key relationship to note is that satisfaction of the Full
condition, equation 1, implies the same for the Top-1 condition, equation 2 (Vaicenavicius et al.,
2019), but the converse does not necessarily hold true.

3.2 FROM CONDITIONS TO LENSES TO ERROR

While reliability conditions provide a principled way to specify when a classifier is perfectly calibrated,
classifiers are rarely able to satisfy non-trivial conditions. As a result, it is useful to specify a way of
measuring the discrepancy between classifier outputs and the ideal. For this, we adopt the generalized
ECE (GECE) framework first presented in Vaicenavicius et al. (2019). Here, we will present it with
different notation in order to modularize the framework into components that can be designed to
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empirically quantify calibration performance for different contexts. These components include: A
lens that expresses how to transform both classifier outputs and ground truth labels into forms that
match a calibration condition, a distance function that can be used to measure the difference between
lensed outputs and labels, and an estimation scheme to estimate the error over a domain.

A lens itself has two components. First, an output transformation function, defined as the function
o : ∆k−1 7→ ∆k′−1, maps a classifiers output g(x) = g to induced outputs g′. Second, a target
transformation function, defined as the function t : ∆k−1 7→ ∆k′−1, maps labels y to induced labels
y′. These two functions define an induced classification problem that implies a particular calibration
condition. To measure the degree in which a classifier violates a calibration condition, we require a
distance function d : ∆k′−1 ×∆k′−1 7→ R that compares classifier outputs to labels and produces
a single scalar measurement of error. In most cases this is a proper distance metric such as total
variation distance (TVD) d (g′,y′) = 1

2 ||g
′ − y′||1.

To measure error over the entirety of the instance and class domains, we take expectation of the error
over P (X,Y ). In the case where there are only finite samples for evaluation, we must estimate the
expectation with an estimation scheme. One of the most popular estimation schemes is histogram
estimation that partitions ∆k′−1 into a finite number of bins and estimates the expectation as a sum
of errors between expected outputs and targets in each bin. Let B = {B1, ...,Bb} be a partitioning of
∆k′−1, and |B| =

∑
B∈B |B|. A sample x is “binned” in B if o(g(x)) ∈ B. Let ḡB be the mean lensed

outputs o(g(x)) = g′ for all x binned in B. Similarly, let ȳB be the mean lensed labels t(y) = y′ for
all x binned in B. The histogram estimation of the expectation of calibration error is defined as:

GECE(g) =
∑
B∈B

|B|
|B|

d (ḡB, ȳB) (3)

As an example, the Top-1 or “Traditional” ECE metric used in Guo et al. (2017) is recovered in this
framing of ECE by the following:

• o(g(x)) = max g(x)

• t(y) = y[arg max g(x)]

• d (ḡ, ȳ) = 1
2 ||ḡ − ȳ||1

• Histogram binning – 15 uniform bins over [0,1]

4 CONTEXT-SPECIFIC CALIBRATION EVALUATION

The generalized ECE framework allows for the design of metrics that reflect how classifiers are
used in practice. This is accomplished by choosing a lens derived from a reliability condition, and a
distance function that defines how error is calculated. In this section we discuss a number of lenses
and distance functions that can be used to map metrics to practical use cases. In addition, we discuss
the concept of a selection operator as a means to isolate specific instances for evaluation. We leave a
discussion of estimation schemes (histogram estimation) to Section B of the appendix.

4.1 SELECTION OPERATORS

In order to formalize the common practice of selecting subsets of instances for evaluation that map
to important scenarios, let λ be a selection operator such that λ(Dtest) ⊆ Dtest that selects sample
pairs (x,y) for evaluation based on conditions over labels or classifier outputs.

Label Conditions The label conditional selection operator λy=c selects instance/label pairs from
Dtest with label c. This is useful when particular events are of interest. For instance, when evaluating
a classifier for an autonomous vehicle it is often important to evaluate how the model performs in
high risk cases such as in instances labeled “pedestrian” (i.e. λy=“ped”). This is analogous to classifier
predictive metrics that condition on labels, an example being the true positive rate often used in
binary settings.
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Output Conditions Similarly, the output conditional selection operator λg(x)�z selects instance/label
pairs based on the output of g.1 For instance, consider the case of a binary classifier that determines
whether a patient has a disease. It may be useful to evaluate the classifier in the cases where it is very
confident (e.g. λg(x)>0.95), as such a condition can be used as the basis for a system that alerts a
physician. Output conditions are analogous to classifier predictive metrics that condition on outputs
such as positive predictive value.

4.2 LENSES

While the Full calibration condition is often sufficient to capture desired definitions of reliability, it is
difficult to learn a model that satisfies it. Alternatively, the Top-1 condition is much less restrictive,
but may not sufficiently represent how a classifier is used. In this section, we discuss two lenses
derived from different reliability conditions than the Full or Top-1, and argue for their practical utility.

Top-k Consider the case where a human is called upon to make decisions based in part on classifier
confidence, such as a physician being assisted with a diagnosis. Here, the user may want to consider
more than just the most probable class, but not all classes (e.g. the top 5 most probable ailments for a
patient). This motivates the Top-k lens, where:

o(g(x)) = max
k

g(x), t(y) = y

[
arg max

k
g(x)

]
(4)

This generalizes the Top-1 lens by allowing for selection of outputs and targets based on the highest
k values in g(x). This is similar in spirit to the commonly used top-k accuracy metric used for
measuring predictive performance.

Grouping In certain applications, classes fall into natural groupings that are each handled differently.
Consider a social media platform that uses a classifier to flag content that violates its terms of use,
where the disciplinary action for within subsets of violations is the same. This represents a case
where miscalibration within a group does not affect downstream decision making. This case and
others motivates metrics that measure calibration error with respect to groupings for which different
downstream actions are taken. For this we propose the grouping lens. Let G = {G1,G2, ...} be a
grouping of Y , such that ∀i,jGi ∩ Gj = ∅ and

⋃
G∈G G = Y . Let the grouping operator for G be

defined as:

δG (z) =

∑
i∈G1

z[i], ...,
∑

j∈G|G|

z[j]

 (5)

The grouping lens for operator δG is defined as:

o(g(x)) = δG(g(x)), t(y) = δG(y) (6)

Here, we transform the probability space over classes (∆k−1) to the probability over groups (∆|G|−1)
by summing the outputs corresponding to the classes within each group. As such, a grouping is a
logical disjunction of the events of class membership of the classes within the group.

4.3 DISTANCE FUNCTIONS

While distance functions based on `1 and `2 norms are most commonly used for ECE (Nixon et al.,
2019), in this section, we propose a non-metric distance function as means to better quantify error
specifically when classifier outputs are directly consumed by a human at decision time in the binary
classification setting (i.e. y = y and ȳ = ȳ).

Inter-Interval Distance It has been shown that humans are poor at reasoning about continuous
values (Teodorescu et al., 2016) such as probabilities, especially at small scales (Resnick et al., 2017).
As such, when designing classifiers that will aid human decision making, it is unreasonable to expect
them to understand the exact, continuous confidence values that are output.

1Note here we use � to represent an abstract conditional operator, as there are a number of conditions that
can be specified.
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In the human factors community, it is common to utilize a Likert scale (Likert, 1932), a set of
ordinal categories representing ranges of values over an interval, to provide more coarse estimates of
continuous values. Indeed, Likert scales have been used both as a means to elicit (Xue & Hauskrecht,
2017), and visualize (Guo et al., 2019), confidence information.

In order to evaluate a classifier’s ability to express confidences that reflect Likert scales, we require
metrics that reflect the error tolerance specified by Likert categories. For this, we utilize the following
non-metric distance function:

d[l,h] (g, ȳ) = max(0,max (l − ȳ, ȳ − h)) (7)

When the Inter-Interval Distance equation 7 is used for the expected error calculation as defined
in equation 3, error in each Likert category is only incurred for a bin when its mean label exceeds the
bounds defined by the category’s interval [l, h]. If this distance function is used in tandem with the
output selection operators that select only instances where classifier outputs fall within the respective
interval [l, h] (i.e. λg(x)≥l and λg(x)≤h), classifier calibration can be evaluated with respect to a Likert
category defined by [l, h]. As an example, if the interval [0,0.2] denotes a “very low confidence”
category, through the use of equation 7 and corresponding output selection operators, the degree to
which a classifier reliably outputs values in the low confidence regime can be measured.

5 EMPIRICAL EVALUATION

Equipped with the means to perform context-focused evaluation of calibration performance, we wish
to determine whether recently proposed classifier calibration techniques that have been shown to
reduce Top-1 ECE also can reduce other variants within the generalized ECE framework. Further,
we wish to highlight the broader utility of generalizing the ECE metric family by providing a
number of case studies in calibration evaluation that reflect a number of potential use cases of
probabilistic classifiers. To these ends, we performed an empirical evaluation that focuses on the task
of calibrating image classifiers that spans a number of neural network architectures, data sets, metrics,
and calibration techniques. Due to page limits, this section reports only on a subset of the full set of
experiments performed that best represent our findings. Experiments not described in this section can
be found in Section D.

In evaluating techniques used to calibrate neural networks, we choose to view techniques as inter-
ventions on a base model, i.e a calibration technique is an explicit augmentation of a neural network
or its training procedure. Training-time interventions either augment training data, or define an
objective to bias the parameters of a neural network towards values that lead to a more calibrated
classifier, while post-processing interventions transform a model’s output. Training-time interven-
tions in our experiments include: Label smoothing (LS) (Szegedy et al., 2016; Müller et al., 2019),
Mix-up (MU) (Zhang et al., 2018; Thulasidasan et al., 2019), and Focal loss (FL) (Lin et al., 2017;
Mukhoti et al., 2020). Post-processing interventions in our experiments include: Temperature scaling
(TS) (Jaynes, 1957; Guo et al., 2017), Bias-corrected temperature scaling (BCTS) (Alexandari et al.,
2020), and Histogram binning (HB) (Zadrozny & Elkan, 2001). While we leave full descriptions of
these techniques to their respective works, each of these techniques have been shown to reduce the
overconfidence effect reported in (Guo et al., 2017). Label smoothing, focal loss, and temperature
scaling address overconfidence by pushing classifier outputs towards the uniform distribution, while
the others are more opaque in their specific effect on the predictive distribution.

Unless otherwise stated, for all experiments we train a 50-layer residual network (ResNet50) as the
base model, use TVD as a distance function, run 5 trials, and show the means and standard deviations
as error bars in the accompanying figures. Further, we adopt a dynamic binning strategy with free
parameters set using the heuristic discussed in Section B. We display Top-1 or “Traditional” ECE,
as defined at the end of Section 3 and clarified in Section 5.1, alongside other proposed metrics to
provide a comparison with how classifier calibration is most commonly measured in other works.
To train models for our experiments we first establish a baseline model by sweeping over relevant
optimization hyperparameters to maximize top-1 accuracy on its respective validation set. Then,
we add the calibration intervention component to the baseline model and tune any hyperparameters
specific to the technique to optimize Traditional ECE without exceeding a 5% decrease in accuracy.
We do this with 5 different random seeds in our training procedures for the 5 trials. We will release
our experiment code with all hyperparameters and seeds used upon publication.
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Figure 1: Top-k ECE (All Interventions, ResNet50, ImageNet)

5.1 TOP-k LENS

Figure 2: Mean Top-k confidences, relative to
baseline (All Interventions except Focal Loss,
ResNet50, ImageNet)

For our first experiment, we investigate how cal-
ibration techniques affect not just the most prob-
able output of classifiers, but other less probable
classes that could influence decision making in
many contexts. Figure 1 shows the top-k ECE’s
for all interventions and the baseline ResNet50
on the popular ImageNet (Deng et al., 2009) data
set (baseline mean/std accuracy: 0.761/0.0013,
2 trials in this case). First, note the bars labeled
“Traditional ECE” and “Top-1 ECE”. The for-
mer, is the Top-1 lens ECE estimated with 15
uniform bins, and the latter is the same but with
adaptively chosen bins. For most methods the
two metrics score Top-1 calibration similarly,
but in some cases, the binning strategies result
in different values.

Excluding focal loss, all interventions reduce the Traditional and Top-1 ECE over the baseline.2
However, at values of k = 5 and higher, almost all interventions improve top-k ECE values very
little, if at all. Mix-up, Temperature scaling, and Bias corrected temperature scaling leave ECE values
of k greater than 5, as well as Full ECE, at a similar value to the baseline, while Label smoothing
performs worse than the baseline with respect to all ECE types other than Traditional and Top-1.
Histogram Binning is the only technique that improves ECE at most values of k, though it still fails
to improve ECE under the Full lens.

Figure 2, which shows the mean confidence values for the kth most probable class relative to the
baseline for each intervention, provides some insight into these phenomena. Here we see that all
calibration techniques reduce the most confident output of the base classifier, thus improving Top-1
ECE by reducing overconfidence. However, each intervention also affected the confidences of the
other 999 classes differently. For instance, label smoothing reduced confidences for the 2nd through
5th most probable classes. This had the effect of raising Top-k ECE for k ∈ [2, 5] compared to
the baseline. This indicates that the base classifier was under-confident for these classes, and label
smoothing incorrectly reduced the corresponding confidences.

Histogram binning, on the other hand, raised the confidence of these classes and was able to reduce
their corresponding Top-k ECEs relative to the baseline. In summary, 1) Traditional ECE is a poor

2As we are unaware of published results on improving ImageNet classification using Focal loss, we used a
sampling of the best performing settings on other data sets reported in Mukhoti et al. (2020), but were unable to
find a hyperparameter setting that was able to reduce Traditional ECE. ImageNet was the only data set in our
experiments where this was the case, and note that it is possible there exists a hyperpameter setting that results
in better Top-1 ECE.
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Figure 3: Group-wise ECEs, (All Interventions, ResNet50, ETHEC)

indicator for performance in Top-k (for k > 1) and full ECE, and 2) different calibration techniques
distribute probability mass differently, which determines how they perform when considering more
of the output distribution than just the most probable class.

5.2 GROUPING LENS AND LABEL SELECTION

Figure 4: Mean family-wise confidence, condi-
tioned on “Rhiodinidae” group (All Interventions,
ResNet50, ETHEC)

To motivate the utility of calibration error mea-
sures that consider groups of classes, argued in
Section 4.2, we run an experiment using clas-
sifiers trained on the ETHEC data set (Dhall
et al., 2020). This data set contains images of
Lepidoptera and hierarchical taxonomic labels
indicating the family, sub-family, genus, and
species of each instance. We train our model
to classify the species of each image (baseline
mean/std accuracy: 0.844/0.0049), but label sets
higher in the hierarchy (such as family) repre-
sent natural groupings for evaluating classifier
calibration across groups.

Figure 3 shows family group-wise ECE metrics.
The first green bar for each intervention repre-
sents the the ECE after the family grouping lens
is applied (inducing the six way family classification problem). We see that while all interventions
decrease Traditional ECE, some increase family-wise ECE suggesting that this improvement is
achieved by reducing probability on the most probable class while incorrectly increasing probability
for classes across family groups. The remaining bars show family group ECE after instances are
selected using a group (label) conditional selection operator for each of the six families of Lepidoptera
(inducing six, one-vs-five individual family classification problems). This allows us to observe that
instances belonging to two families (Lycanidae and Riodinidae) incur much higher family-wise ECE
than the other families.

Figure 4 sheds some light on why these two errors are especially high. Here, we plot the mean
confidences for each class output by the models for only instances with the label Riodinidae (group
selection operation). We see that many of the techniques incorrectly reduce the confidence in the
correct label over the baseline (besides Mix-up), which can explain the relative performance between
techniques according to Riodinidae-conditioned group ECE shown in Figure 3. In addition, all models
assign a significant amount of confidence in the Nymphalidae group, highlighting that the techniques
tend to “confuse” Riodinidae instances as Nymphalidae to a higher degree than the other groups.
Interestingly, Lepidopterology literature suggests these two families are very closely related (Brown Jr
et al., 2012).
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Figure 5: Interval-wise ECEs (All Interventions, ResNet50, CrisisMMD)

5.3 INTER-INTERVAL DISTANCE AND OUTPUT SELECTION

Figure 6: Test instances per interval (all interven-
tions, ResNet50, CrisisMMD)

In our final experiment we highlight metrics
for evaluating confidence under the assumption
that it will be displayed to humans in a Likert
scale. For this we trained a classifier (baseline
mean/std accuracy: 0.825/0.0023) on a version
of the CrisisMMD data set (Alam et al., 2018)
that consists of image tweets that were either
labeled “informative” or “not informative” for
analysis and tracking of humanitarian crises. We
evaluate classifier calibration for this problem
under the assumption that classifier confidences
will be used to express low ([0.0,0.33]), medium
([0.33,0.66]), and high ([0.66,1.0]) confidence
categories to end-users.

Figure 5 shows the Traditional and full ECE metrics as before but also includes three others that
measure error for each category. For instance, the green bar is achieved by applying the output
conditional selection operators λg(x)≥0.0 and λg(x)<0.33, and distance d[0,0.33], effectively measuring
only the error of bins in the low category for which their mean labels are outside that category’s
interval. We see that not only do all models have zero calibration error for the medium category,
but some interventions have zero calibration error for all intervals. This shows that all interventions
produce outputs that better adhere to the specified Likert scale than the baseline. Figure 6 visualizes
the number of instances in each interval. All models output confidences in the medium interval less
often than the two extremes, though the interventions produce more medium confidence outputs.
This indicates that the baseline model incurs interval-specific error that the interventions reduce by
moving high-confidence outputs to the medium interval.

Together, Figures 5 and 6 show that some methods (TS, BCTS, and HB) model Likert categories
especially well. Methods that do incur category-specific error do so inconsistently (e.g. LS incurs
higher mean-error in the “high” category than the “low”, while FL and MU exhibit the opposite
behavior). Finally, this experiment shows that these interventions encourage more outputs in the
“medium” confidence category over the baseline. Such analysis can be beneficial when determining
how likely the model is to output each category.

Summary of Evaluation In this section, we presented three case studies in classifier calibration,
each motivated by use cases in which outputs of probabilistic classifiers are used to aid in making
decisions. We showed how to use the GECE framework to tailor calibration metrics to the contexts
specified by each use case. Beyond that, we found two common trends among the experiments. First,
improved performance over a baseline as measured Traditional ECE was not a strong indicator of
improved performance in other variants of ECE used in our evaluation. This motivates the use of
context-specific ECE metrics when classifier usage is known a priori. Second, techniques consistently
reduced Traditional ECE by reducing the magnitude of the maximum classifier output, but in doing
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so increased the probability of other classes. The techniques differed in which classes probability
mass was increased, resulting in differing performance in ECE variants that consider more than the
most probable output. We believe this again motivates the use of more context-specific evaluation of
calibration performance.

6 CONCLUSION AND FUTURE WORK

In this work we propose a number of metrics to measure the context-specific calibration performance
of probabilistic classifiers based on a more generalized statistical framing of expected calibration
error. Components that make up these metrics can be designed to measure error for isolated instances
that can have application-specific importance, and to explicitly represent interpretations of classifier
outputs that map to how the classifier will be used in practice. We evaluate a sampling of the state of
the art in calibration, and show that our proposed metrics measure practical notions of calibration not
captured by previously used metrics.

We have identified two noteworthy directions of future work. First, one could extend our experiments
to evaluate other kinds of calibration techniques that do not neatly fit into the training-time or post-
processing intervention categories including Monte Carlo Dropout (Gal & Ghahramani, 2016), Weight
Uncertainty Neural Networks (Blundell et al., 2015), and Deep Ensembles (Lakshminarayanan et al.,
2017). Second, it is clear than none of the methods we evaluated were designed to calibrate their
models according to the variety of metrics we proposed. This motivates the need for techniques that
are able to calibrate models according to more specific definitions of reliability.
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A LENSES AND DISTANCES

Here, we briefly discuss a lens and a distance that were omitted from the main paper.

A.1 CLASS CONDITIONAL

To focus evaluation on a specific of interest c, one can use the class conditional lens:

o(g(x)) = g(x)[c], t(y) = y [c] (8)

Here, both the classifier output and target label vectors are reduced to just their elements corresponding
to class c. This allows for the measurement of the calibration over a single class. The authors of Nixon
et al. (2019) argued for the utility of this metric, and used it in their own evaluation.

A.2 CLASS WEIGHTED ERROR AND GENERALIZED MAHALANOBIS DISTANCE

In many applications, there is an inherent cost associated with particular classes. For instance, in
medical diagnosis, certain conditions are more severe than others and a classifier that erroneously
predicts the presence of a severe condition can lead to unnecessary, invasive, and/or expensive
treatments. On the other hand, if a classifier fails to predict a severe condition when a patient does
indeed have it, then the condition can go untreated. For this reason, it can be useful to measure error
with respect to cost associated with each class. In Kumar et al. (2019), the authors propose to use the
class conditional lens combined with the following weighted distance function to incorporate this
idea into calibration error metrics:

d(g,y) =

(
k∑
i

wi (g[i]− y[i])
2

)1/2

(9)

This distance function leads to an error that weighs the discrepancy between output and target for
each class separately. One can rewrite equation 9 as the following:

d(g,y) =
(
(g − y)W(g − y)T

)1/2
(10)

Where, W is a k × k diagonal matrix, with [w1, w2, ..., wk] down the diagonal. More generally, W
need not be diagonal. Instead we can use a fully parameterized matrix M, which makes equation 10
a generalized Mahalanobis distance:

d(g,y) =
(
(g − y)M(g − y)T

)1/2
(11)

In equation 11, off diagonals represent weights corresponding to errors incurred between two classes
(e.g. Wi,j , weighs the error incurred when probability mass is allocated to class i and the true class
is j). This can allow for calibration metrics that weigh particular kinds of confusion between classes.
For instance, one could assign lower weight the case when an instance of a malignant tumor has high
classifier output for a “benign tumor” class than the case when it is not classified as a tumor at all.
The former may lead to a case where a tumor is extracted and found to be malignant by a pathologist,
while the latter may result in the tumor not even being extracted.

Despite the potential utility, this metric formulation comes with a few caveats. First, in order for
equation 11 to be a proper distance metric, M must be positive semi-definite (PSD). As such, it is not
as simple as assigning intuitive weights to each element of M that corresponds to a particular kind
of “confusion”, as it might lead to a non-metric distance. Second, the off diagonals do not have as
intuitive of an interpretation as the diagonal entries do. Even if the PSD constraint is not determined
to be important when using the distance to model error, it is not obvious what exact values for the
off-diagonals should be relative to each other. One way to set these free parameters would involve
some level of exploratory analysis by developers using the metric in tuning the matrix with respect
to examples where they would want error to be higher or lower than each other. The alternative
would be to learn M through expert feedback using some form of metric learning (Bellet et al., 2015).
While we feel this is a promising metric formulation to be used for measuring calibration error, these
complexities led us to leave a proper treatment of the topic to future work.
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B HISTOGRAM ESTIMATION

In the course of our evaluation, we also analyzed the statistical properties of the histogram estimation
involved in computing the expected value of the calibration error. Though often glossed over in many
modern works in the deep learning literature that use the ECE as a calibration metric, we believe it is
a key component to study in regards to computing any variant of the generalized ECE in an accurate
and principled manner. Through our analysis we arrive at a practitioner heuristic for how to configure
the simply parametrized algorithm used to perform the estimation, though we emphasize the need for
continued study of this facet of the classifier calibration measurement problem.

B.1 BINNING PROCEDURES

A binning procedure determines the bins B = {B1, ...,Bb} for the histogram estimation involved
in the error computation (stated in main work as equation 3, restated below, with a hat as ÊCE
equation 13, to differentiate it from the true expected value statement of the ECE equation 12).
The simplest choice is a uniform scheme that partitions ∆k′−1 into evenly sized bins. While
uniform sized bins have intuitive individual interpretations because they slice the output space into
fixed, identifiable regions, prior work in the statistical literature has shown that data-dependent
binning schemes provide more accurate estimates (Nobel, 1996). As an alternative, adaptive binning
schemes have been proposed.3 Here, bin boundaries are determined by partitioning test instances
Dtest = {(xi, yi)}Ni=1∼ p (X,Y ), such that bins contain (roughly) the same number of instances,
but represent different sized subsets of ∆k′−1. More specifically, a suitable algorithm that produces
an γ-adaptive binning scheme will produce bins such that maxi |Bi| ≤ γ. Note that if γ := N

M ,
where N = |Dtest|, then the adaptive binning is data-dependent, and the fraction of instances in a
bin is upper bounded by the choice of M , given the fixed number of a test samples of interest, N .
One appropriate algorithm for adaptive binning is to spatially partition instances using a k-d tree. We
adopt an implementation originally proposed for this specific purpose in Vaicenavicius et al. (2019).

B.2 A HEURISTIC TO ENSURE ESTIMATOR Consistency

Despite the fact that ECE metrics computed using binned estimation schemes can exhibit undesirable
statistical consistency (Kumar et al., 2019), the framework remains popular due to its direct inter-
pretability with respect to calibration conditions. Encountering this shortcoming in our experiments,
we found that controlling the bias of the histogram estimator is key in achieving accurate ECE
estimates in practice.

Based on our evaluation, and the foundations established in prior work (Vaicenavicius et al., 2019),
we recommend setting the adaptive binning parameter γ to balance biases in the estimator. Figure 7
plots the full ECE of a classifier versus γ, over 1000 bootstrapped re-samples of test data. Note that
in contrast to all other error bars in this work, which are based on the result of multiple training trials,
the error bars on Figure 7, are constructed using this bootstrapped resampling with replacement (N
draws from N points). The bars displayed show the standard deviation of the metric value over those
1000 resamples, at each γ setting. We observe that ECE “stabilizes” around γ = 2−4, effectively
balancing the negative bias arising from a binning that is too coarse grained, and the positive bias
from lacking sufficient samples per bin. We use this heuristic to determine settings for γ in our
experiments.

B.3 STATISTICAL PROPERTIES OF THE HISTOGRAM ESTIMATOR

In this section we elaborate on a number of characteristic behaviors exhibited by generalized ECE
metrics that are computed using binned, plug-in estimation schemes. In particular, we formalize bias
and variance trends using a combination of arguments from two previous works in the calibration
literature as well as basic intuition about density estimation. Here we provide a consolidated
discussion of asymptotics and implications posed in those works as well as empirical evidence of
their relevance in practice. The goal here is to motivate the importance of studying the estimation

3Adaptive schemes for ECE estimation have been employed in related work on classifier calibration such
as Nixon et al. (2019), but only in binary settings.
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Figure 7: Full ECE versus adaptive bin fraction
parameter γ

Figure 8: Median, min, and max, points per bin in
the set of bins generated by the adaptive scheme
versus bin fraction parameter γ

component of the framework due to its direct effect on the quality of your metric values. Especially
when utilizing reliability conditions that are more expressive than the traditional Top-1 ECE, the
strength of the statements that can be made about the effectiveness of a given model calibration
technique directly depends on the quality of your error estimations.

For reference in the sections to follow, the formal definitions for the Expected Calibration Error and
the Histogram Estimation of the ECE are (re)stated below as Equations (12) and (13), respectively.
Though the notation is slightly overloaded, in the main work, and the appendices, if not explicitly
stated, the “calibration error”, or “ECE”, when referred to as an empirically measurable quantity, is
by definition, the estimated error (13).

ECE(g) := EX,Y∼P (X,Y )d (P (Y |g (X)) , g (X)) (12)

ÊCE(g) =
∑
B∈B

|B|
|B|

d (ḡB, ȳB) (13)

B.3.1 CONVERGENCE

When using the generalized ECE framework, it is suggested that given “sensible” choices for binning
procedures used to generate B = {Bb}Mb=1, ones that result in smaller and smaller bins as the size
of the finite sample N = |Dtest| grows, the estimate of the calibration error (13), converges to
the true calibration error (12) (Nobel, 1996). A formalization of this convergence assumption in
the sufficiently many samples and finely-grained binning scheme limit is provided as Theorem 1
in Vaicenavicius et al. (2019), restated with some simplification below.

Given continuity of the distance function and smoothness of the “perfect re-calibration” mapping
of g → y implied by the data and learned model (i.e. the posthoc transformation applied to the
model that would be required to make it perfectly output the label distribution everywhere), with
diam(Bb) := supxi,xj∈Bb

‖xi − xj‖2, if limM→∞maxb (diam(Bb)) = 0, we have:

lim
M,N→∞

ÊCE(g) = ECE(g) (14)

Both uniform and data-dependent schemes can satisfy the required conditions of for (14), however,
appropriate adaptive data-dependent schemes are expected to provide better estimator consistency for
a fixed sample of a given size. Thus, for most sample sets, adaptive schemes are expected to produce
more accurate error estimates. As mentioned previously, Figure 7 shows the ECE as a function of
the adaptive binning granularity parameter γ, and additionally Figure 8 gives an summary of the
spread of points-per-bin membership counts for the actual binnings realized by the algorithm at each
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γ setting. Recall that γ = N
M , and as such, the ratio in those figures varies from large to small, left to

right along the x-axis, implemented via increasing the number of bins, M , which we refer to as the
direction of increasing binning granularity.

B.3.2 NEGATIVE ASYMPTOTIC BIAS AS N →∞

In addition to the general dependence of the estimator quality on the type of binning procedure dis-
cussed in the previous section, another important relationship between the true ECE and the empirical
realization computed via histogram estimation is the underestimation, or negative asymptotic bias, of
the binned estimator. Proposition 3.3 in Kumar et al. (2019) formalizes this for binary lenses and
Theorem 2 in Vaicenavicius et al. (2019) does the same for arbitrary lenses, conditioned on a finite,
fixed data-independent (such as uniform, or similar) partitioning and basic continuity of the distance
function:

lim
N→∞

ÊCE(g) ≤ ECE(g) (15)

The intuition for the source of the negative bias incurred by any fixed binning scheme as samples
increase, is that the mean calculation in each bin absorbs the overconfidence and underconfidence
incurred in different subsets of that bin. This results in a loss of accumulated error in each individual
bin, and thereby a lower overall error value. This bias is a general consequence of the discretization
to the mean, and is thereby expected independent of the specific binning procedure or the distance
function chosen for your ECE metric. The left extreme of Figure 7 demonstrates the empirical
presence of this bias mode when the binning granularity is too coarse.

B.3.3 POSITIVE ASYMPTOTIC BIAS AS M →∞

There exists a second, competing, asymptotic bias that arises, especially when the distance function
used is based on the `1 vector norm (such as TVD). In constructing the ÊCE, we compute the
bin-wise mean outputs ḡB and mean targets ȳB to approximate the local, or per bin, values that are
“plugged-in” to the distance function of the calibration error. As a result this type of estimator is
sometimes referred to as a plug-in estimator.

The combination of the `1 norm and the plug-in procedure results in a positive bias when the binning
scheme is too fine-grained for the number of samples available. For a fixed sample of size N :

lim
M→∞

ÊCE(g) ≥ ECE(g) (16)

The argument in Appendix G of Kumar et al. (2019) is that the positive bias of the binned calibration
error arises due to the nature of the absolute value. If you consider any fixed, finite, sample set,
the difference between the two plug-in estimates ḡB and ȳB computed from the samples will be
non-zero even for a perfectly calibrated model where, in expectation, the per bin mean output and
mean target are actually equivalent (zero error according to (12), the non-estimated ECE). Thus, for
the estimated ÊCE, these overestimations accumulate in the overall error value in the limit. The
right extreme on Figure 7 demonstrates the empirical presence of this bias mode when the binning
granularity is too fine.

B.3.4 SAMPLE COMPLEXITY OF THE VARIANCE

Additionally, following a basic statistical intuition for the bais-variance tradeoff expected when
performing any histogram density estimation, we hypothesize that in the limit of a binning scheme
that is too fine-grained for the number of samples available, there should be an increase in variance
of the ÊCE. We empirically verify this by fixing the adaptive binning parameter γ, and modifying
the bootstrap resampling process used to create error bars in Figure 7 such that instead of drawing
N times from the N points, we draw n times, creating the axis series for n

N ∈ [0.1, 0.2, ..., 1.0].
On the low end of the range, this artificially puts the estimator into the extremely low sample
availability regime for the given model and data manifold, and produces increased variance of ÊCE
and this is visualized in Figure 9. However, we note that the absolute standard deviation is still
relatively small (< 0.01 where the absolute error is ∼ 0.14, with spread of 0.08 over the γ range).
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Figure 9: The standard deviation of the generalized
ECE on 1000 bootstrap resamples with replace-
ment at a sample fraction of n

N

We conclude that this hypothesized behavior,
increased variance due to low sample availabil-
ity, is not the estimator consistency facet that a
practitioner should worry about when working
with data sets with standard values forN , and C
the number of classes, reasonable class balance,
and performant model architectures (CIFAR-
10/100/ImageNet and deep convolutional net-
works). However, we do note that narrower
lenses on the model output, like Top-1, seem
to exhibit higher sensitivity (increase spread of
the variance over γ range) in the low sample-
availiability regime than the full ECE, suggest-
ing this could be more of an issue in practice
due to the ubiquity of the Top-1 variant.

B.4 PRACTITIONER PRESCRIPTION AND FUTURE WORK

The adaptive binning granularity parameter setting, γ = 0.1, is suggested as a baseline for a k-d
tree based algorithm on standard data sets. This is a practitioner guideline derived by interpreting
the empirical results across our generalized ECE types and selection of data sets and models in the
context of the theoretical foundations from previous work. By sweeping the granularity parameter for
your binning algorithm and identifying a region of relative stabilty in the metric value (the boxed
region of Figure 7), a practitioner has some evidence that their metric of interest is not dominated by
either asymptotic behavior mode - the negative bias arising from a binning that is too coarse, or the
positive bias from lacking sufficient samples per bin when computing plug-in means. That being said,
based on our results, we posit the existence of tighter, or at least more fully characterized, bounds
between the histogram estimated ÊCE and true ECE when working with standard data contexts
and corresponding values for N and M . More comprehensive analyses of data dependent binning
algorithms, their parametrization, and their sample complexity, especially for the more expressive
and understudied “full” ECE lens, is an important direction of further research.

C ADDITIONAL EXPERIMENTAL DETAILS

In order to provide for technical transparency, reproducibility of our results, and further experimenta-
tion based on our work, we describe our experimental setup in further detail below. However, we
direct readers to our source code release (upon publication) as enumeration of the full details is
better suited to the model and algorithmic definitions provided by our implementation, as well as the
parameter settings listed in human-readable configuration files.

C.1 DATA SETS AND MODELS

The three neural network architectures used in the evaluation are a ResNet50 (He et al., 2016), a
MobileNetV2 (Sandler et al., 2018), and a DenseNet100 and DenseNet201 (Huang et al., 2017). The
implementations of each are ported from PyTorch Vision (https://github.com/pytorch/
vision) with modifications to the DenseNet architecture based on the Lua Torch repository origi-
nally released with the DenseNet paper (https://github.com/liuzhuang13/DenseNet).
The data sets used across each of the different experimental settings are roughly divided into the
“standard” data sets for training models on the multi-class classification task from scratch 1) CIFAR-
100 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009), and 2) those which we take a model
first pretrained on ImageNet, and then finetune it on a second classification task - CBIS-DDSM (Lee
et al., 2017; Shen et al., 2019), ETHEC, Crisis-MMD, and COVID-CXR-2 (Pavlova et al., 2021).

For data sets that have a published train, test and validation split, the validation split is used, else a
fraction of the training set is withheld as the validation set. For each model and data set pairing, any
architectural changes required to reconcile model input and output dimensionality are made, and then
a series of data pre-processing and augmentation transformations are applied to the data, and a loss
function, network optimizer, and training schedule are specified.
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We first establish base models, where no calibration intervention is applied, and then create corre-
sponding versions where each intervention is applied individually. We configure model components
and set hyperparameters using a combination of the details from each model’s introduction paper and
the papers in which each individual calibration technique is proposed. We also survey the benchmark
accuracy numbers found in a results meta-repository, paperswithcode.com, to make sure that
our configuration for each model architecture achieves sufficient accuracy (relative to similar architec-
tures) on each data set in the evaluation that is outside of the original model paper’s set of published
results. The extensive enumeration of all training configuration details and hyperparameters is ill
suited for prose or even tabular format, but for each (model, data set, TT intervention) triplet, of which
there are 3× 6× (3 + 1) including the base model, we provide in our code release, a human readble
YAML configuration file that describes all parameters required to replicate each of the accuracy,
generalized ECE, and other metric values we report. Architectural changes to models for handling
different image sizes and class counts can be inspected in the architectures section of the library in
our source code release.

C.2 INTERVENTIONS/TECHNIQUES

Train-time interventions are implemented as changes to the training configuration, and therefore
require changes to one or more of the base model’s training parameters. Post-processing interventions
are implemented as an additional module, post-processor pp, taking as input the logits or softmax
layer outputs of the base model. The Train-time interventions introduce an extra characterizing
hyperparameter each, controlling the strength of the technique, that must be set for each model and
data set pairing it’s applied to. The PP intervention modules require a set of learned parameter(s) to
be optimized with respect to the negative log likelihood of the composition pp ◦ g on the the held-out
validation set, nll(pp(g),y). We set each Train-time intervention’s strength hyperparameter to the
value that minimizes traditional, or top-1 ECE without sacrificing more than 5% accuracy over the
base model by performing a grid search over a fixed range of values chosen based on the settings
reported in each technique’s original paper, as well as subsequent works that utilize the technique.

Train-time interventions and their respective strength hyperparameter:

• Label smoothing - smoothing α
• Mix-up - mix-up α
• Focal loss - γ schedule

Post-processing interventions and their learned parameter(s):

• Temperature scaling - temperature T
• Bias-corrected temperature scaling - T,b
• Histogram binning - number of bins

We scope our evaluation to a sampling of techniques in the Train-time and Post-processing intervention
classes, but note that the analysis done in this work can be extended to other techniques. We publicly
release our evaluation code to facilitate the evaluation of techniques not included in this work.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 TOP-1 ACCURACY

In Tables 1-7 we report all the accuracy values for each baseline model as well as the models with
each intervention for all experiments. All values reported are the means over five trials, the exception
being ImageNet, whose accuracy values are from 1 or 2 trials, depending on the architecture.

D.2 RESULTS SUPPLEMENTING THOSE FROM MAIN PAPER

In this section, we show some additional results that supplement the experiments shown in the main
body of the paper. Each subsection here extends the subsection of the same name in Section 5 of the
main paper.
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D.2.1 TOP-k LENS

Figure 10 plots the top-k accuracy of a ResNet50 model composed with each calibration intervention
as a function of k on the ImageNet test set. Here, we see that for the base model the correct class is
almost always in the top 100 highest output classes. Because of this, any technique that allocates
probability mass to classes > 100 likely incur error for top-k ECE metrics for k > 100. This can
explain why some methods that more evenly distribute probability mass incur error at higher k
values. Figure 11 shows the mean entropy of of the output distributions of all interventions applied to
ResNet50 on the ImageNet test set. We see that all techniques (with exception of HB) increase the
entropy, showing that they effectively push their output distributions towards uniform, as reported for
some of the interventions in prior work.

D.2.2 GROUPING LENS AND LABEL SELECTION

Figure 12 shows the Group-wise ECE (no selection operators) of all interventions with groupings
at all levels of the hierarchy from “family” to “species”. Here, we see that as the groupings get
finer in granularity, the ECE increases, starting “family” ECE (same as the green “family” bars in
Figure 3 of the main paper), and ending with the “species” grouping, which is equivalent to a full
ECE measure (the classes used to train the models were based on the species labels). We see that as
the groupings get finer in granularity, the ECE increases, which is a natural effect of inducing more
specific classification problems.

D.2.3 INTER-INTERVAL DISTANCE AND OUTPUT SELECTION

Figure 13 shows the same results as Figure 5 of the main paper, except instead of using inter-interval
distance to measure inter-interval error, we use standard total variation distance (TVD) to measure
both inter- and intra- interval error. Stated another way, using TVD instead of inter-interval distance
here removes the effect of suppressing error that occurs only within a bin’s interval. The main result
of note is that all methods encounter significant error in the [0.33, 0.66] “medium” interval when
measured by TVD, while they incur no error when the inter-interval distance is used. This highlights
that bins in the medium interval for all methods have no mean labels that fall outside of the medium
interval, but they are not exact estimates of their mean outputs.

D.3 RESULTS WITH ADDITIONAL NETWORK ARCHITECTURES

Figures 15-27 show the same experiments used to generate the figures in Section 5 in the main paper
with the only difference being the neural network architecture used. Here, we use MobileNetv2 and a
100 layer DenseNet (DenseNet100) instead of the 50 layer residual network (ResNet50) used in the
main paper. We did this for the sake of rigor, and found that the results reported in the main paper for
ResNet50 also largely hold for these two architectures. We believe this is evidence that our results
generalize across a variety of popular neural network architectures.

D.4 RESULTS USING ADDITIONAL DATA SETS

For each of the three experiments we provided in the main paper, we ran a similar experiment on an
additional data set. In this section we show these additional results.

D.4.1 TOP-k LENS

We perform the same experiment as in Section 5.1 of the main paper, but using the CIFAR-
100 (Krizhevsky et al., 2009) data set. Similar to the visualizations in the main paper, Figure 14
shows the top-k ECE values for all interventions, and Figure 17 shows the mean confidence values
for the k-th highest-valued output class for all interventions. The biggest difference between these
results and those obtained by evaluating the models on ImageNet is the performance of Focal Loss,
as we did not have an issue finding a suitable hyperparameter setting for the intervention in this
case. All interventions reduce the top-k ECE over the baseline, however, each intervention trends
differently as k increases. For example, focal loss has a higher top-1 ECE than label smoothing,
but a lower top-100 ECE. Additionally, the improvement in Full ECE shown in Figure 14, does not
correlate perfectly with improvement in Traditional ECE for all techniques (note label smoothing

20



ML Evaluation Standards Workshop at ICLR 2022

actually increases the full ECE relative to the baseline). As discussed in the main work, based on
Figure 17, this phenomenon can likely be attributed to the fact that many of the techniques place
more probability mass on less probably classes than the baseline, even though the correct class is
rarely one of them.

D.4.2 GROUPING LENS AND LABEL SELECTION

Similar to the experiment in Section 5.2 of the main paper, we perform a grouping experiment
this time on the CBIS-DDSM data set. This data set consists of 224× 224 patches extracted from
mammography imagery. Each patch is an instance in our experiment labeled as either “benign mass”,
“benign calcification”, “malignant mass”, “malignant calcification”, or “background”. For groups in
our experiments, we grouped the two “malignant” labels to form one group, the two “benign” labels
to form a second, and used the “background” images as a third. This induces a classification problem
that tries to discriminate “malignant”, “benign”, and “background” patches.

Figure 28 shows a number of ECE measures for all interventions on the CBIS-DDSM data set. The
green bar represents the full ECE after the aforementioned grouping is applied. We can see that
all interventions are able to reduce ECE for this induced problem as well as Traditional ECE (blue
bar). The remaining bars represent the same grouped ECE but after a group selection operator is
applied for each group. The main result here is that while all interventions are able to reduce the
full group ECE over the baseline, most actually have higher group ECE when each group is isolated.
This example highlights that when adaptive binning is used separately for different ECE metrics, then
the results between different ECE measures becomes difficult to directly relate to each other. In this
case, because different instances were used to find the adaptive bins for the full group and the group
conditional ECEs, their realizations become decoupled.

Figure 29 shows the mean confidence values of all models for each of the three groups after the
malignant conditional operator is applied, meaning only instances with “malignant” labels are
evaluated. Here we see a more detailed picture of calibration error than by just looking at Figure 28.
For instance, Focal Loss and BCTS incur very similar malignant conditional group ECE, but Focal
Loss tends to put more probability mass on the benign class than the background class. Such a
difference between how error is incurred can have important practical ramifications.

D.4.3 INTER-INTERVAL DISTANCE AND OUTPUT SELECTION

Finally, we performed experiments similar to those in Section 5.3 in the main paper to show another
use case of inter-interval distance and output selection, this time using the COVID-CXR-2 data set.
This data set contains chest x-ray images labeled either as COVID positive or COVID negative. Here
we perform the same output selection operators and inter-interval distance functions to create “very
high confidence” ([0.9,1.0]) and “not very high confidence” ([0.0,0.8]) intervals. Such intervals can
be used to alert clinicians when a patient is very likely to be COVID positive.

Figure 30 shows the Traditional ECE, Full ECE, and the intra-interval errors from both intervals
created using output conditional operators and inter-interval distance, similar to what is done in
the main paper. The baseline model has zero error for both of the inter-interval errors, while all
interventions incur a non-zero amount of error. Figure 31 shows that all interventions move some
points from the “very high confidence” interval to the “not very high confidence” interval. This
indicates that many of the instances moved were positive instances, making the mean labels in the “not
very high confidence” interval shift to the “very high confidence interval” causing error. This shows
an example where the baseline model seemingly has high calibration error compared to interventions
according to Traditional ECE, but actually is well suited to reflect a particular Likert categorization
of confidence.
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Figure 10: Top-k test set accuracy versus k (All Interventions, ResNet50, ImageNet)

Figure 11: Mean entropy of outputs on test set (All Interventions, ResNet50, ImageNet)
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Model ResNet50 MobileNetV2 DenseNet100
Base Model 0.739 ± 0.0052 0.734 ± 0.0022 0.791 ± 0.0038
Focal Loss 0.764 ± 0.0035 0.728 ± 0.0021 0.795 ± 0.0053
Mix-Up 0.757 ± 0.0037 0.746 ± 0.0036 0.802 ± 0.0038
Label Smoothing 0.744 ± 0.0115 0.735 ± 0.0023 0.791 ± 0.0021
Temp. Scaling 0.739 ± 0.0052 0.734 ± 0.0022 0.791 ± 0.0038
Bias-Corrected TS 0.735 ± 0.0082 0.731 ± 0.0021 0.792 ± 0.0020
Hist. Binning 0.731 ± 0.0056 0.728 ± 0.0032 0.785 ± 0.0033

Table 1: Top-1 Classification Accuracy, CIFAR-100 Data Set

Model ResNet50 MobileNetV2 DenseNet201
Base Model 0.761 ± 0.0013 0.716 0.774
Focal Loss 0.742 ± 0.0002 0.682 0.757
Mix-Up 0.768 ± 0.0005 0.719 0.782
Label Smoothing 0.766 ± 0.0016 0.717 0.778
Temp. Scaling 0.761 ± 0.0013 0.716 0.774
Bias-Corrected TS 0.765 ± 0.0002 0.721 0.779
Hist. Binning 0.760 ± 0.0008 0.716 0.775

Table 2: Top-1 Accuracy, ImageNet (ResNet50/MobileNetV2/DenseNet201 Trials: 2/1/1)

Model ResNet50 MobileNetV2 DenseNet201
Base Model 0.694 ± 0.0076 0.681 ± 0.0054 0.692 ± 0.0087
Focal Loss 0.663 ± 0.0050 0.652 ± 0.0038 0.668 ± 0.0074
Mix-Up 0.707 ± 0.0048 0.697 ± 0.0046 0.714 ± 0.0035
Label Smoothing 0.689 ± 0.0051 0.684 ± 0.0068 0.691 ± 0.0069
Temp. Scaling 0.694 ± 0.0076 0.681 ± 0.0054 0.692 ± 0.0087
Bias-Corrected TS 0.696 ± 0.0063 0.682 ± 0.0035 0.697 ± 0.0081
Hist. Binning 0.683 ± 0.0076 0.665 ± 0.0083 0.679 ± 0.0073

Table 3: Top-1 Classification Accuracy, CBIS-DDSM Data Set

Model ResNet50 MobileNetV2 DenseNet201
Base Model 0.844 ± 0.0049 0.811 ± 0.0052 0.844 ± 0.0088
Focal Loss 0.842 ± 0.0050 0.806 ± 0.0063 0.840 ± 0.0074
Mix-Up 0.858 ± 0.0051 0.803 ± 0.0067 0.853 ± 0.0102
Label Smoothing 0.858 ± 0.0011 0.818 ± 0.0044 0.848 ± 0.0072
Temp. Scaling 0.844 ± 0.0049 0.811 ± 0.0052 0.844 ± 0.0088
Bias-Corrected TS 0.848 ± 0.0039 0.813 ± 0.0071 0.849 ± 0.0090
Hist. Binning 0.815 ± 0.0046 0.781 ± 0.0069 0.814 ± 0.0071

Table 4: Top-1 Classification Accuracy, ETHEC Data Set

Model ResNet50 MobileNetV2 DenseNet201
Base Model 0.945 ± 0.0060 0.949 ± 0.0087 0.962 ± 0.0098
Focal Loss 0.930 ± 0.0133 0.950 ± 0.0114 0.951 ± 0.0063
Mix-Up 0.945 ± 0.0129 0.956 ± 0.0042 0.972 ± 0.0068
Label Smoothing 0.939 ± 0.0110 0.948 ± 0.0123 0.967 ± 0.0054
Temp. Scaling 0.945 ± 0.0060 0.949 ± 0.0087 0.962 ± 0.0098
Bias-Corrected TS 0.939 ± 0.0055 0.943 ± 0.0042 0.953 ± 0.0102
Hist. Binning 0.945 ± 0.0054 0.952 ± 0.0113 0.954 ± 0.0193

Table 5: Top-1 Classification Accuracy, COVIDX-CXR-2 Data Set

Model ResNet50 MobileNetV2 DenseNet201
Base Model 0.825 ± 0.0023 0.813 ± 0.0060 0.824 ± 0.0042
Focal Loss 0.823 ± 0.0025 0.814 ± 0.0035 0.828 ± 0.0033
Mix-Up 0.828 ± 0.0043 0.831 ± 0.0045 0.830 ± 0.0048
Label Smoothing 0.819 ± 0.0033 0.811 ± 0.0054 0.825 ± 0.0026
Temp. Scaling 0.825 ± 0.0023 0.813 ± 0.0060 0.824 ± 0.0042
Bias-Corrected TS 0.826 ± 0.0023 0.814 ± 0.0066 0.825 ± 0.0025
Hist. Binning 0.806 ± 0.0027 0.801 ± 0.0055 0.817 ± 0.0057

Table 6: Top-1 Classification Accuracy, CrisisMMD Data Set
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Figure 12: Group-wise ECE, various groupings (All Interventions, ResNet50, ETHEC)

Figure 13: Interval-wise ECEs, TVD Distance (All Interventions, ResNet50, CrisisMMD)

24



ML Evaluation Standards Workshop at ICLR 2022

Figure 14: Top-k ECE (All Interventions, ResNet50, CIFAR-100)

Figure 15: Top-k ECE (All Interventions, MobileNetv2, CIFAR-100)

Figure 16: Top-k ECE (All Interventions, DenseNet100, CIFAR-100)

25



ML Evaluation Standards Workshop at ICLR 2022

Figure 17: Mean Top-k confidences, relative to baseline (All Interventions, ResNet50, CIFAR-100)

Figure 18: Mean Top-k confidences, relative to baseline (All Interventions, MobileNetv2, CIFAR-
100)

Figure 19: Mean Top-k confidences, relative to baseline (All Interventions, DenseNet100, CIFAR-
100)
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Figure 20: Group-wise ECEs, (All Interventions, MobileNetv2, ETHEC)

Figure 21: Group-wise ECEs, (All Interventions, DenseNet201, ETHEC)

Figure 22: Mean family-wise confidence, conditioned on “Rhiodinidae” group (All Interventions,
MobileNetv2, ETHEC)
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Figure 23: Mean family-wise confidence, conditioned on “Rhiodinidae” group (All Interventions,
DenseNet201, ETHEC)

Figure 24: Interval-wise ECEs (All Interventions, MobileNetv2, CrisisMMD)

Figure 25: Interval-wise ECEs (All Interventions, DenseNet201, CrisisMMD)
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Figure 26: Test instances per interval (all interventions, MobileNetv2, CrisisMMD)

Figure 27: Test instances per interval (all interventions, DenseNet100, CrisisMMD)

Figure 28: Group-wise ECEs, (All Interventions, ResNet50, CBIS-DDSM)
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Figure 29: Mean group-wise confidence, conditioned on “malignant” group (All Interventions,
ResNet50, CBIS-DDSM)

Figure 30: Interval-wise ECEs (All Interventions, ResNet50, COVIDX-CXR2)

Figure 31: Test instances per interval (All Interventions, ResNet50, COVIDX-CXR2)
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