
ML Evaluation Standards Workshop at ICLR 2022

CHECKDST: MEASURING REAL-WORLD
GENERALIZATION OF DIALOGUE STATE TRACKING
PERFORMANCE

Hyundong Cho1∗, Chinnadhurai Sankar2, Christopher Lin2, Kaushik Ram Sadagopan2,
Shahin Shayandeh2, Asli Celikyilmaz2, Jonathan May1, Ahmad Beirami2
1 University of Southern California, Information Sciences Institute 2 Meta AI
jcho@isi.edu

ABSTRACT

Neural dialogue state tracking (DST) models employ various strategies to further
push state-of-the-art results in DST benchmarks. However, it is difficult to gauge
whether these results, which are on test sets distributionally similar to those seen
during training, translate to better real-world performance as these models tend
to fail when faced with realistic natural language variations. Qualitative analy-
sis that go beyond comparing benchmark metrics have been sparse, limiting our
understanding of comparative strengths of different approaches to DST and sub-
sequently impeding opportunities to combine them. Therefore, a comprehensive
and consolidated comparison of DST performance is crucial. To this end, we de-
sign CheckDST, a framework with a collection of metrics that formally quantifies
robustness to perturbations and facilitates qualitative comparisons by measuring
commonly known challenges and problematic behaviors. Using CheckDST, we
discover that the robustness and reaction to perturbations of top-performing DST
models vary significantly despite comparable joint goal accuracy results (JGA).
Although span-based classification models achieve slightly better JGA than gen-
eration models, they are significantly less robust to distribution shift and give
up entirely on their predictions while generation models continue to attempt at a
prediction for the correct slots. Secondly, we observe that while stopping training
early, e.g., at the first epoch, hurts JGA, the resulting models are significantly more
robust to distribution shift. Lastly, guided by weaknesses that CheckDST expose,
we propose PrefineDST, a simple generation model pretrained with non-target
datasets to internalize reasoning skills relevant to DST, to simultaneously boost
JGA and robustness.

1 INTRODUCTION

The growing desire and feasibility to interact with intelligent systems through conversations have
driven recent efforts in task-oriented dialogue (TOD) models, which form the backbone of digital
assistants such as Siri, Google Assistant, and Amazon Alexa. A crucial skill for these models
is dialogue state tracking (DST), which requires understanding the users’ intents and extracting
slot values to populate API queries in order to fulfill their goals. So far, state-of-the-art for DST
performance has been determined by performance on an in-domain test set (Dai et al., 2021a; Su
et al., 2021; Heck et al., 2020).

However, performance on a test set that is distributionally similar to the training set can be misguiding:
it does not capture how well a model performs on out-of-distribution examples, which are inevitable
in real-world deployment. For example, Qian et al. (2021) showed that recent DST models face
a significant performance drop when test-set named entities are replaced with ones unseen during
training. Liu et al. (2021) developed LAUG, an automatic augmentation tool for TOD datasets,
and found a similar lack of robustness in DST models when they are exposed to various realistic
perturbations. Similarly, Peng et al. (2021b) introduced a robustness benchmark for TOD models

∗Work was done during an internship at Meta AI.

1



ML Evaluation Standards Workshop at ICLR 2022

Metric Examples Correct DST Predictions

Original I would like to leave from cambridge
PI JGA Perturbed Please book me one departing from cambridge train departure cambridge

Original I would like to leave from cambridge
SDI JGA Perturbed I would like to uh leave from london no i meant cambridge train departure cambridge

Original I would like to leave from cambridge train departure cambridge
NED JGA,
NoHF Perturbed I would like to leave from mbadgceir train departure mbadgceir

Coref JGA

<user> I need you to book the restaurant for me if that’s okay.
For 2 people at 19:45 on Tuesday...
<user> Actually, I’m also looking for a train. I need to go
to London Kings Cross on the same day as the restaurant booking.

...
restaurant day tuesday
train day tuesday
...

Table 1: An overview of metrics in CheckDST. For cJGA metrics, we are interested in tracking how
often both original and perturbed samples are correctly predicted when either one of them is correct.

in the low-resource setting. Chen et al. (2021); Dai et al. (2021b) also highlight the importance of
making comparisons that go beyond accuracy on a given test set.

In this paper, we first introduce and motivate CheckDST1 – a framework for quantifying DST
robustness for both full-shot and few-shot settings to facilitate comprehensive assessments and
comparisons of DST performance. It provides a general framework for test set augmentation that
can incorporate existing augmentation schemes. We define new metrics that measure prediction
consistency via conditional joint goal accuracy (JGA) as opposed to separately measuring JGA on
the perturbed test sets. We argue both theoretically and empirically that the conditional metrics
additionally quantify the consistency of performance on original and perturbed test sets, which is
crucial for model robustness against statistical variations, not captured by previous work. CheckDST
also separately highlights performance on cases that are known to be more challenging, such as those
that requiring coreference resolution (Han et al., 2020). It also tracks the frequency of hallucination,
a problem occurring frequently in popular generation models, such as GPT-2 (Radford et al., 2019)
and BART (Lewis et al., 2020).

Our second contribution is the analytical insights derived from using CheckDST. We show that
models with higher JGA on the original test set may be significantly less robust. In particular, we
evaluate two popular classes of state-of-the-art models, span-based classification models and models
based on autoregressive language models (henceforth classification models and generation models,
respectively). Results show that while classification models attain modestly higher JGA and do not
hallucinate, generation models are significantly more robust to various perturbations. We also find
that robustness degrades as training progresses by examining each model’s intermediate checkpoints
and elucidate how the degradation is manifested from qualitative analyses. These results verify that
comparing JGA and using it as a stopping criterion during training is a poor practice as it misses useful
information for quantifying real-world performance when a model faces the inevitable distribution
shift at deployment.

Finally, we demonstrate how the weaknesses exposed by CheckDST can guide the development
of more robust DST models that reduce the trade-off between JGA and robustness. We share our
experiments with PrefineDST, a DST model pretrained with tasks in a similar fashion to the T0
model (Sanh et al., 2021) to acquire skills that should intuitively boost robustness as quantified by
CheckDST. Our results demonstrate preliminary success in transferring such skills from non-target
datasets for bridging the gaps in robustness as quantified by CheckDST.

2 CHECKDST

CheckDST stands for Checklist for Dialogue State Tracking and is an implementation of principles
advocated by CheckList (Ribeiro et al., 2020).

CheckDST is motivated by realistic perturbations that robust DST models are expected to be resilient
to. In this section, we motivate and formally define the metrics and perturbations that form the basis
of CheckDST. An overview of the metrics is shown in Table 1.

1Our code and data are available at https://anonymous.4open.science/r/CheckDST-22A4.
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2.1 MEASURING ROBUSTNESS WITH CONDITIONAL JGA (CJGA)

With CheckDST, we want to answer the questions: (i) “To what degree is the performance of DST
models invariant to or reflective of valid perturbations that may be encountered at deployment, such
as paraphrases and unseen named entities?” and (ii) “How does their robustness compare to other
models?”

To this end, one can capture robustness by comparing JGA to JGA on the perturbed test set (J̃GA),
but this assumes that the perturbed test set is more difficult to the model, and hence the performance
drop represents a lack of robustness. There may be cases where certain perturbed samples are
easier than the original, leading a model to achieve J̃GA similar to JGA, even though it makes
lots of inconsistent predictions between the original and perturbed pairs. Therefore, to capture the
consistency of performance between original and perturbed samples in addition to the performance
drop due to difficulty of the perturbed test set, we choose to make our comparisons using conditional
JGA (cJGA).

cJGA measures the frequency of the cases where the prediction is correct on both the original and
perturbed samples when either one of them is correct. Given a DST model (with parameters θ),
let function f(z; θ) → {0, 1} indicate whether the joint goal is satisfied on sample z = (x, y),
where x is the dialogue history and y is the reference belief state. Further, let z̃ = (x̃, ỹ) denote a
perturbed sample (e.g., with paraphrased dialog history). Then, we define cJGA for a sample set
N := {1, . . . , n} as:

cJGA :=
1

|I|
∑
i∈I

1(f(zi; θ) = f(z̃i; θ) = 1),

where 1(·) denotes the indicator function and I is the index set of all examples in N with at least one
of f(zi; θ) or f(z̃i; θ) equal to one.

When labels are preserved, i.e. y and ỹ are identical, cJGA is an adaptation of the CheckList
invariance test, and if changes from y to ỹ are mirrored in changes from x to x̃, it is an adaptation
of the Checklist directional test (Ribeiro et al., 2020). We also make the mathematical case for
the usefulness of cJGA by proving that cJGA ≤ 1 − |JGA − J̃GA| in Lemma 1 (Appendix A),
with equality only if the model performance is consistent on perturbed samples and original ones.
This establishes that cJGA captures robustness beyond the JGA drop as it additionally captures the
consistency of performance across the original and perturbed test set.

We now discuss the types of perturbations that we apply to z, their importance for robust DST, and
how we measure resilience to them with cJGA.

Paraphrase Invariance cJGA (PI cJGA). Users may employ a wide variety of styles and nuances
to express the same intent. Hence, the predictions of a robust DST model should be consistent for
utterances that have the same semantics. There is a wide spectrum for what is considered a paraphrase,
including single word replacements with a synonym. According to Li et al. (2020), DST models
only drop 2% in JGA for these kinds of simple paraphrases that were generated via back-translation.
However, when the paraphrases become more complex and share only a few words, as they would be
in a real world situation, the models demonstrate significant drops in JGA (Peng et al., 2021b; Liu
et al., 2021), indicating that understanding paraphrases is still a challenge.

In the context of DST, paraphrasing is defined as any change to the wording of utterances that
preserves the dialogue acts and dialogue belief states. Thus, PI cJGA measures whether a model
can make correct slot predictions consistently for two semantically equivalent utterances.

Speech Disfluency Invariance cJGA (SDI cJGA). Many task-oriented dialogue applications are
built around voice-based digital assistants. Therefore, a DST model’s resilience to speech artifacts
is a crucial criterion a TOD model’s success. Speech disfluencies are common speech artifacts
that include the restart of requests mid-sentence, use of non-lexical vocables or filler words, and
stammering and repetition that occur within the flow of otherwise fluent speech (Wang et al., 2020).
As with PI cJGA, SDI cJGA measures how often a model maintains a correct predictions even
with the presence of speech disfluencies.
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Named Entity Directional cJGA (NED cJGA). As highlighted by the motivation for DST models
that explicitly employ a copy mechanism (Gu et al., 2016; Heck et al., 2020; Mehri et al., 2020;
Li et al., 2020), DST models should not memorize named entities from training data so that their
performance is generalizable to unseen entities.

However, generation DST models often overfit and incorrectly predict named entity slot values with
entities that appear frequently in the training set (Qian et al., 2021). In order to determine the extent
of overfitting to named entities seen during training, we replace named entities in the dialogue belief
states and conversations with scrambled entities. NED cJGA tracks how frequently a model correctly
mirrors a change in the conversation to its prediction to obtain the right slot values.

2.2 COREFERENCE JGA (COREF JGA )

In addition to cJGA metrics, we track performance for cases that require coreferences. Long
conversations with coreferences that span multiple turns are relatively more difficult, as shown by the
performance improvement when their annotations are present (Quan et al., 2019; Han et al., 2020). As
a proxy for measuring a model’s ability to understand longer conversations and resolve coreferences
for making correct predictions, we simply calculate the JGA for samples in the original test set that
require coreference resolution.

2.3 NO HALLUCINATION FREQUENCY (NOHF)

Generation models have become popular following recent success with various NLP tasks (Radford
et al., 2019; Lewis et al., 2020; Sanh et al., 2021; Wei et al., 2021; Aghajanyan et al., 2021), including
task-oriented dialogue (Su et al., 2021; Peng et al., 2021a; Hosseini-Asl et al., 2020). However,
content hallucination, providing irrelevant entities memorized from training, is a well-known issue
for generation models (Massarelli et al., 2020; Maynez et al., 2020). Despite being a common
phenomenon, it is only indirectly measured by NED cJGA, so we measure hallucination frequency
as well in CheckDST.

When a model makes a prediction for a named entity slot, we verify whether the predicted value
is contained in the dialogue history, i.e., NoHF is equal to 1 if the predicted named entity is in the
dialogue history and 0 otherwise. CheckDST reports NoHF on both the original test set and one used
for NED cJGA (NoHF Orig and NoHF Swap).

2.4 CHECKDST IS EXTENDABLE AND DATASET-AGNOSTIC

Just as CheckList allows bring-your-own tools, CheckDST is easily extendable since any augmenta-
tion tool can be used to introduce new dimensions of robustness and measure it with cJGA as long
as the belief state labels are aligned with the perturbation. Also, CheckDST is dataset-agnostic as
long as the same inputs for the augmentation tools are available in other task-oriented datasets. In
fact, CheckDST can be applied to other NLP tasks that can benefit from similar perturbations and
robustness quantification through cJGA, e.g., sentiment analysis. However, this paper is focused on
DST. We explain CheckDST’s generalizability further in Appendix B.1.

3 EXPERIMENTS

We now describe the dataset and the competitive models we evaluate with CheckDST to make
fine-grained comparisons on their robustness.

3.1 DATASET

Here, we use MultiWOZ (Budzianowski et al., 2018), a corpus with more than 10,000 multi-domain
and single-domain task-oriented dialogues, as an example TOD dataset that we apply CheckDST to.
We specifically use MultiWOZ 2.3 (Han et al., 2020), which includes corrections from MultiWOZ 2.1
(Eric et al., 2020) and coreference annotations, and LAUG (Liu et al., 2021) for augmenting its test
sets. We use MultiWOZ 2.3 in its original train/test/dev splits. LAUG is an open-source augmentation
toolkit that can be used for any task-oriented dialogue dataset that has dialogue acts and belief state
annotations.

4



ML Evaluation Standards Workshop at ICLR 2022

Dataset Perturbations. To compute PI cJGA and SDI cJGA, we use the test sets augmented
with paraphrases and speech disfluencies using LAUG. The degree of paraphrasing with LAUG is
significant, replacing 74% of all words. For SDI cJGA, LAUG inserts speech disfluencies according
to their occurrence frequency in the Switchboard corpus (Godfrey et al., 1992). More than 97% of
the perturbations were considered appropriate by human evaluators.

For NED cJGA, we scramble the character order of named entity slots, such as restaurant name,
to create unseen entities as done by Huang et al. (2021). Instead, we could have swapped with real
entities not seen during training, such as those from Schema Guided Dialogue (SGD) (Rastogi et al.,
2020; Qian et al., 2021). However, since some baseline models are pretrained with SGD, we choose
scrambled entities as the default for a fair comparison.

Since CheckDST can be calculated for each sample and its augmented counterpart, we can use it on
any subset of a given dataset. Therefore, we construct the same few-shot setting in Peng et al. (2021a)
and compare model robustness in a low-resource single-domain environment. The few-shot dataset
contains 50 single-domain conversations from each of the attraction, train, taxi, hotel,
and restaurant domain for the training set and validation set and 200 for the test set.

3.2 MODELS

From those models reported on the MultiWOZ 2.0 repository and the MultiWOZ 2.3 repository , we
implement a subset that has replicable code. All models are trained for 10 epochs in the full-shot
setting and 20 epochs in the few-shot setting. We provide more training details in Appendix B.2.

Recent DST models that attain competitive results can be largely divided into two groups: span-based
classification models and generation models.

Span-based classification models. These models predict the starting and ending index of slot
values that must be extracted from the context or choose labels from a predefined ontology for those
that are not directly in the context. The domains and their slot types are fixed, and predictions are
made for every possible (domain, slot-type) pair using a classification layer.

(i) TripPy (Heck et al., 2020) is a model based on BERT (Devlin et al., 2019) that uses a three-
level copying strategy to predict dialogue belief states. For every domain-slot type pair,
it determines whether slot values can be copied from the current utterance, the previous system
utterance, or the previous turns dialogue belief state.

(ii) ConvBERT-DG (Mehri et al., 2020) has the same architecture as TripPy but it replaces BERT
with ConvBERT-DG, which itself is a BERT model that has been pretrained on more than 70
million conversations of open-domain dialogue and then finetuned on the DialoGLUE benchmark.
Another difference with TripPy is that ConvBERT-DG multitasks with the masked language modeling
objective before and during the finetuning process.

Generation models. Generation models for DST predict belief states in the same way the
underlying model generates text. It sequentially generates the domain, slot-type, and
slot-value. Belief states are generated usually via greedy sampling on P (xt|x1:t−1, C; θ)),
where X = {x1, x2, ...xt} is the flattened text format of the belief state, e.g. domain slot-type
slot-value, C is the dialogue context, and θ is the model parameters. Generation models are
becoming increasingly popular as they can be expanded to perform end-to-end task-oriented dialogue
by also generating the dialogue policy and responses after the belief states.

(i) SimpleTOD (Hosseini-Asl et al., 2020) is a GPT-2 model that is trained to generate the dialogue
belief states in domain slot-type slot-value format given a conversation.

(ii) BART-DST (Lewis et al., 2020; Qian et al., 2021) is the same as SimpleTOD except it uses BART
instead of GPT-2.

(iii) SOLOIST (Peng et al., 2021a) is also similar to SimpleTOD but it excludes dialogue act
prediction during end-to-end training and adds a pretraining step with SGD.

(iv) MUPPET is a BART-DST model that is prefinetuned on more than 50 natural language tasks
(Aghajanyan et al., 2021). MUPPET adds auxiliary layers that take the representation of the final
token in BART to perform classification tasks and does standard autoregressive language modeling
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JGA Coref JGA PI cJGA SDI cJGA NED cJGA NoHF Orig NoHF Swap

CLS TripPy (2020) 62.4 ± 0.1 36.8 ± 0.5 55.2 ± 0.4 44.5 ± 0.5 3.3 ± 1.0 100 ± 0 100 ± 0
ConvBERT-DG (2020) 62.0 ± 0.2 36.0 ± 0.6 54.9 ± 0.2 46.9 ± 0.7 2.5 ± 0.5 100 ± 0 100 ± 0

GEN

SimpleTOD (2020) 55.5 ± 0.8 29.4 ± 0.2 84.6 ± 0.8 70.8 ± 0.7 21.6 ± 0.2 93.6 ± 0.2 78.2 ± 1.0
BART-DST (2020) 61.1 ± 0.3 38.1 ± 0.3 79.8 ± 0.6 71.6 ± 1.0 19.8 ± 0.7 95.9 ± 0.1 71.6 ± 0.8
SOLOIST (2021a) 60.7 ± 0.2 35.6 ± 0.3 82.8 ± 0.8 70.1 ± 0.6 15.4 ± 0.7 95.8 ± 0.0 66.2 ± 1.5
MUPPET-DST (2021) 59.4 ± 0.7 31.6 ± 2.3 87.1 ± 0.8 74.1 ± 0.7 7.0 ± 1.2 95.8 ± 0.2 60.6 ± 1.3
PrefineDST (Ours) 61.8 ± 0.4 37.1 ± 1.1 84.5 ± 0.5 75.7 ± 0.6 19.8 ± 0.9 95.7 ± 0.1 73.4 ± 1.0

Table 2: CheckDST results on MultiWOZ 2.3 full-shot training. CLS: Classification, GEN: Genera-
tion. All results are percentages, presented as the median ± standard error over five runs. x marks
the best score for the column while x marks the worst. If there is an overlap between median -
standard error and median + standard error with the best/worst score, the difference is considered
statistically insignificant and all overlapping scores are highlighted.

for generation tasks. MUPPET reports improved performance on downstream tasks and better data
efficiency.

(v) Lastly, PrefineDST is our contribution, which is based on a multi-tasking prefinetuning step
similar to (Sanh et al., 2021), specifically targeted at acquiring skills that intuitively should improve
robustness as quantified by CheckDST. We describe it in more detail later in Section 4.4.

4 CHECKDST RESULTS

4.1 BETTER JGA DOES NOT CORRELATE WITH MORE ROBUSTNESS

First, we evaluate classification models and generation models in the full-shot setting to examine
their robustness. For all models, we select the model with the best validation set JGA in 10 epochs
of training and report the results in Table 2, which demonstrate a dramatic divergence of robustness
properties between the classification and generation models. Although the classification models attain
slightly higher JGA than the best performing generation model and never hallucinate by design, they
are much less robust than generation models against all perturbations.

The classification models’ relative lack of robustness to replaced named entity slots is somewhat
surprising given that identifying spans of text for slot prediction intuitively feels like an easier task
than trying to generate the unseen slot values. We will study these in more detail next.

4.2 TRAINING LESS IS BETTER FOR MORE ROBUSTNESS

The divergence in robustness revealed by CheckDST despite close JGA between classification models
and generation models in the full-shot setting led to the question of “how do robustness metrics
evolve throughout training?” We answer this question by running CheckDST on all the training
checkpoints to observe how each model’s performance on each metric in CheckDST fares across
different training checkpoints.

Figure 1: Most of the gains for TripPy and BART-
DST on JGA are reached before the first few
epochs and continues to steadily increase, but
CheckDST metrics continue to deteriorate ex-
cept for Coref JGA. The x-axis for BART-
DST uses a logarithmic scale to better visualize
the progression in the first epoch.

In Figure 1, we use TripPy and BART-DST as rep-
resentative examples, as trends among the same
type of models are similar, to compare classifica-
tion and generation models and plot how scores
on JGA and CheckDST metrics evolve through-
out training. Overall, we can see the trends for
each metric are similar across model types, where
PI cJGA and SDI cJGA are quite flat while
NED cJGA continues to deteriorate. The starting
points of these metrics differ and that the relative
strength of generation models on these metrics are
maintained throughout the full length of training.
In particular, NoHF Swap rapidly exacerbates as
training proceeds for generation models.

We also observe a trade-off between most of
CheckDST metrics and JGA (except for Coref
JGA which increases proportionately with JGA)
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for all models. This trade-off for extra training
is summarized in Figure 2, where we compare the model’s performance at the first and the tenth
epochs.

The full CheckDST results on the first epoch used for Figure 2 and the CheckDST trend charts for
other models can be found in Appendix B.3.

Figure 2: Relative gains and losses on
CheckDST for TripPy and BART-DST when sub-
tracting scores of the checkpoint with the best
validation JGA (epoch 10) from those of epoch
1.

To understand how robustness degrades, we also
perform a qualitative analysis to identify patterns
of failure that become apparent over time. For
each model, we inspect 100 examples from each
perturbed test set that were correctly predicted
by an earlier checkpoint with the highest cJGA
and incorrectly predicted by the final checkpoint
selected as the best model. Here we discuss our
findings.

Classification models give up on span predic-
tion with more training. As training progresses,
we observe that TripPy and ConvBERT-DG start
to produce more none labels for slot values and
tend to not make any span predictions (rather
than making incorrect span predictions). For
example, the span for a scrambled entity for
the restaurant name slot was correctly pre-
dicted to retrieve “osdi jkal" in the second epoch,
but the final checkpoint decides a span for the slot
does not exist and does not produce a span.

Generation models have difficulty correctly
copying out-of-domain slot values Generation
models also struggle with unseen named entities, but their types of failure are more mixed. They either
(i) fail to copy the slot values correctly and produce substrings or (ii) determine that the slot value does
not exist and generate nothing. In an earlier epoch, BART-DST correctly generates “restaurant
name osdi jkal”, but later instead produces “restaurant name osjkal”. In other
cases, the prediction becomes empty, similar to the behavior of classification models.

4.3 FEW-SHOT RESULTS SHOW A SMALLER DIVERGENCE IN ROBUSTNESS PERFORMANCE.

Figure 3: The difference on CheckDST between
the median values for classification and generation
models are much less pronounced in the few-shot
setting (right).

The robustness properties of DST models in the
few-shot setting follow a similar pattern as the
full-shot setting, albeit with a much smaller di-
vergence between span-based classification and
generation models. As illustrated in Figure 3
which shows the median performance of each
group of models in full-shot and few-shot set-
tings. Overall, we see a much smaller difference
between the two group of models. The full re-
sults of the few-shot setting can be found in
Appendix B.3.

The number of gradient update steps taken dur-
ing training in the few-shot setting for 20 epochs
is equivalent to that of only 0.2 epochs in the
full-shot setting. Therefore, it seems that larger
number of updates is more accountable to degrading robustness and the wider disparity in CheckDST
for the full-shot setting than how often the same data samples are observed during training. These re-
sults from the few-shot setting also reinforce our finding that more training can deteriorate robustness
for most models.
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4.4 PREFINEDST RESULTS

The weaknesses exposed by CheckDST guide us towards approaches that can boost robustness
without compromising JGA. Motivated by the strong results of massive multi-task learning on many
NLP tasks in recent work, such as MUPPET (Aghajanyan et al., 2021), T0 (Sanh et al., 2021) and
FLAN (Wei et al., 2021), we explore PrefineDST, short for Prefinetuned DST, to train a more robust
DST model. PrefineDST is a BART model that is first prefinetuned with the same method as T0 on
tasks that require understanding paraphrases, generating exact spans of text from the context, and
resolving coreferences, with the expectation that similar skills will be transferred when finetuned on
a downstream DST task and eventually be reflected in better scores on CheckDST. Details on the
chosen tasks and our implementation can be found in Appendix C.

Full-shot ↓ Few-shot ↓
TripPy (2020) 11.45 4.38

ConvBERT-DG (2020) 11.44 6.71
SimpleTOD (2020) 7.51 14.11
BART-DST(2020) 6.36 4.13
SOLOIST (2021a) 8.30 0.85

MUPPET-DST (2021) 10.72 6.38
PrefineDST (Ours) 4.97 1.83

Table 3: Average slack of each model from the best
performing model on every metric in CheckDST
and JGA based on results in Table 2 and Table 4.
Bold indicates the best performing model and
underline denotes the second best model.

PrefineDST is a promising avenue for a ro-
bust DST model. Overall, results in Table
2 show that the simple and intuitive approach
behind PrefineDST is successful in maintain-
ing the robustness advantage that generation
models have over classification models and per-
forms on-par or better on all CheckDST metrics
among competitive generation model baselines
except for on NoHF and NED cJGA, even for
which PrefineDST ranks second best. This well-
rounded performance is summarized in Table 3
and also reflected in the few-shot setting.

PrefineDST is most directly comparable to
BART-DST and thus it is notable that it achieves
a higher JGA in both full-shot and few-shot setting while simultaneously achieving comparable
or better results in all CheckDST metrics. This is reflective of robustness being enhanced through
knowledge transfer from the prefinetuning tasks.

In addition, PrefineDST’s superior results to MUPPET-DST, which has been prefinetuned with more
than 40 compared to 8 for PrefineDST, show that choosing NLP tasks that require skill related to the
downstream task is more useful than having more tasks. Also, the results indicate that multitasking
with all tasks as generation tasks is more effective than additional auxiliary layers when DST is also
formulated as a generation task. In fact, MUPPET’s poor performance compared to BART-DST on
NED cJGA and NoHF Swap shows that prefinetuning can actually be harmful to robustness.

In conclusion, using a simple and intuitive approach, PrefineDST shows that prefinetuning with
non-target datasets is a promising direction for boosting robustness. We leave it to future work to
leverage CheckDST as a guide to explore more sophisticated prefinetuning strategies and non-target
tasks to improve on PrefineDST.

5 RELATED WORK

Pretrained language models continue to make impressive strides on NLP benchmarks, surpassing
human baseline scores on many of them (Lee et al., 2020; Reddy et al., 2019; Rajpurkar et al., 2016;
Wang et al., 2019; 2018). These results led to questions of whether these models were acquiring
the intelligence required for their performance to be robust or instead taking advantage of spurious
correlations (Bender & Koller, 2020; Clark et al., 2019). Many work showed that the latter was
the case and sought adversarial techniques to test these models to new limits (Gardner et al., 2021;
Wallace et al., 2019; Hosseini et al., 2017) and train them to be more robust (Oren et al., 2019; Jia
et al., 2019; Jones et al., 2020).

Robustness in dialogue models has also been similarly questioned. Perturbations to the dialogue
history have exposed that dialogue models do not effectively use dialogue structure information
(Sankar et al., 2019) and commonsense probes showed that they struggle with commonsense rea-
soning(Zhou et al., 2021). Specifically for the dialogue state tracking task, several work reported
drops in performance for conversations with entities unseen during training (Qian et al., 2021; Huang
et al., 2021; Heck et al., 2020) or with adversarially created dialogue flows (Li et al., 2020). Liu et al.
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(2021) and Peng et al. (2021b) recently initiated a rigorous study into the robustness of TOD models
to realistic natural language perturbations. They are most related to CheckDST.

We extend their work to establish a framework that further facilitates robustness analysis with addi-
tional metrics that capture coreference resolution performance and frequency of well-known problems
to generation models. Moreover, we propose cJGA, a simple yet rigorous metric that enables measur-
ing robustness in DST without making assumptions about the difficulty of perturbations.

PrefineDST is motivated by the recent line of work that uses generation models for DST. SimpleTOD
(Hosseini-Asl et al., 2020) first reported viability of formulating TOD tasks in a completely end-to-
end manner with a generation model and SOLOIST (Peng et al., 2021a) added a pretraining step to
improve on data efficiency. PrefineDST, inspired by recent work on impressive results from massive
multi-tasking prefinetuning (Aghajanyan et al., 2021; Sanh et al., 2021; Wei et al., 2021), extends
SimpleTOD and SOLOIST by adding more prefinetuning tasks.

6 CONCLUSION

We introduced CheckDST, a DST robustness framework, and used it to reveal the gap in robustness
between span-based classification models and generation models with similar JGA, verifying that
performance on a test set distributionally similar to a training set does not capture a model’s robustness
to the inevitable deployment-time distribution shifts. We also observed a trade-off between JGA
and robustness as CheckDST deteriorate as training proceeds while JGA increases, calling for more
robust finetuning approaches. Finally, we use the robustness issues exposed by CheckDST to guide
the development of PrefineDST, a model that better maintains both JGA and CheckDST metrics
through a prefinetuning step to multi-task on reasoning skills that should intuitively boost robustness
as quantified by CheckDST.

We encourage future work on task-oriented dialogue to adopt CheckDST and conduct a comprehensive
analysis of DST robustness. We believe that the analysis CheckDST enables will pave clearer paths
for future research that make task-oriented dialogue models more reliable when deployed to the real
world.

9
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BROADER IMPACT

In this paper, we showed that CheckDST could be used to reveal insights about the robustness of DST
models and we hope that the task-oriented dialogue research community would build on and improve
CheckDST as a means for reliable deployment of models in the real world. We acknowledge that
CheckDST cannot capture generalization to arbitrary distribution shifts in practice as the perturbations
against which we measure robustness have to be known ahead of time; and mechanisms to simulate
such perturbations need to be built and incorporated, which can be considered a limitation of our
work. We also recognize that our analysis has been conducted only in English and therefore our
empirical findings may not necessarily be true for DST models built for other languages.

MultiWOZ Budzianowski et al. (2018) is an open-source dataset released with the Apache 2.0 license
and we use it for research purposes only.

REFERENCES

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettlemoyer, and
Sonal Gupta. Muppet: Massive multi-task representations with pre-finetuning. arXiv preprint
arXiv:2101.11038, 2021.

Emily M. Bender and Alexander Koller. Climbing towards NLU: On meaning, form, and under-
standing in the age of data. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 5185–5198, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.463. URL https://aclanthology.org/
2020.acl-main.463.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan
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APPENDIX

A FURTHER JUSTIFICATION FOR CJGA

Lemma 1. Let

JGA :=
1

n

∑
i∈[n]

f(zi; θ), (1)

J̃GA :=
1

n

∑
i∈[n]

f(z̃i; θ), (2)

cJGA :=
1

|I|
∑
i∈I

1(f(zi; θ) = f(z̃i; θ) = 1), (3)

where 1(·) denotes the indicator function and I is given by

I := {i | max{f(zi; θ), f(z̃i; θ)} = 1} . (4)

Then,

cJGA ≤ 1− |JGA− J̃GA|
max{JGA, J̃GA}

≤ 1− |JGA− J̃GA|. (5)

Proof. First notice that for any i ∈ I,

1(f(zi; θ) = f(z̃i; θ) = 1) = 1− |f(zi; θ)− f(z̃i; θ)|. (6)

Hence, ∑
i∈I

1(f(zi; θ) = f(z̃i; θ) = 1) = |I|−
∑
i∈I

|f(zi; θ)− f(z̃i; θ)| (7)

≤ |I|−

∣∣∣∣∣∑
i∈I

(f(zi; θ)− f(z̃i; θ))

∣∣∣∣∣ (8)

= |I|−

∣∣∣∣∣∣
∑
i∈[n]

(f(zi; θ)− f(z̃i; θ))

∣∣∣∣∣∣ (9)

= |I|−n|JGA− J̃GA|, (10)

where equation 8 follows from Jensen’s inequality, equation 9 follows from the fact that f(zi; θ)−
f(z̃i; θ) = 0 for i ̸∈ I and hence we can increase the domain of summation from I to [n], and equa-
tion 10 follows from the definition. Notice that equation 10 is achieved with equality if and only if
f(zi; θ) = f(z̃i; θ) or f(zi; θ) = 1− f(z̃i; θ), for all i ∈ I. Hence,

cJGA =
1

|I|
∑
i∈I

1(f(zi; θ) = f(z̃i; θ) = 1) (11)

≤ 1− n|JGA− J̃GA|
|I|

(12)

≤ 1− |JGA− J̃GA|
max{JGA, J̃GA}

(13)

≤ 1− |JGA− J̃GA|, (14)

where equation 12 follows from equation 10 and equation 13 follows from the fact that |I|≥
n × max{JGA, J̃GA}, and equation 14 follows from the fact that max{JGA, J̃GA} ≤ 1. Notice
that equation 14 is achieved with equality if and only if max{JGA, J̃GA} = 1. This completes the
proof.
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Lemma 1 shows that cJGA not only captures the discrepancy between JGA and J̃GA, but it can
actually capture robustness beyond that. As an example, consider a case where JGA = J̃GA = 0.6,
hence no drop is observed. In this case if cJGA ≈ 1, it means that the performance is robust but
the model is struggling with learning some particular flows. On the other hand, if cJGA is low, e.g.,
0.2, it means that the performance is statistically fragile and the JGA is mostly affected by model
robustness. This would not have been revealed by solely quantifying the JGA drop. As a second
example, consider a case where the JGA = 0.8 whereas J̃GA = 0.6. It is straightforward to show
that cJGA cannot be larger than 0.75 (see Lemma 1), hence capturing the JGA drop. On the other
hand, cJGA may be (much) smaller than 0.75 if there are further statistical model variations due
to lack of robustness (inconsistency of performance across original and perturbed samples), which
would not be revealed by the JGA drop.

B FURTHER NOTES ON CHECKDST

B.1 GENERALIZABILITY OF CHECKDST

For CheckDST to be applied to a TOD dataset, the dataset must have dialogue act and belief state
annotations at the minimum. If these annotations are available, we can use the LAUG toolkit to
insert speech disfluencies and generate paraphrases with a SC-GPT model Liu et al. (2021); Peng
et al. (2020). To replace named entities, named entity slot types must be pre-defined such that these
values can be automatically scrambled or replaced, both in the annotations and dialogue. In the same
vein, the named entity slot types are used to determine hallucination frequency by measuring how
often their slot values are not values from the given text. Coref JGA is the least portable metric
in CheckDST as it requires coreference annotations. However, using simple regular expressions for
pronouns and frequently used terms such as “same X as” can discover many coreference cases with
high precision. These subsets can then be used for measuring Coref JGA.

B.2 BASELINE TRAINING DETAILS

Most models are trained on MultiWOZ 2.1 Eric et al. (2020) and therefore we retrain them on
MultiWOZ 2.3 Han et al. (2020) before assessing them on CheckDST. Unless otherwise specified, we
use the set of hyperparameters mentioned by the original work and run five iterations with different
seed values for results to have more statistical significance. If not provided, we do a hyperparameter
search for the best learning rate and choose the configuration that leads to the best median JGA on
the validation set. For each baseline, we train with five different seeds and report the median and
standard error of these runs.

For finetuning MUPPET Aghajanyan et al. (2021) with MultiWOZ, we follow the same setup used in
the original work for finetuning on downstream tasks. We drop the additional layers and use only the
parameters that are part of the original BART architecture to finetune MUPPET on MultiWOZ in the
same way as BART-DST.

For the few-shot setting, we make some adjustments to the hyperparamters from the full-shot setting
to allow for at least 5,000 gradient updates before training ends. Every model is trained for 20 epochs
with a batch size of 4 in order to provide each model with the same amount of training. The total
GPU hours for baseline models is about 600 hours including all full-shot and few-shot experiments.

B.3 CHECKDST RESULT DETAILS

CheckDST results for the first epoch and the few-shot setting are shown in ?? and Table 4, respectively.
Plots for CheckDST over time for classification models are in Figure 5 and for generation models are
in Figure 4.
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Figure 4: CheckDST over different epochs for generation models.

Figure 5: CheckDST over different epochs for classification models. By design, span-based classifi-
cation models do not hallucinate, so both NoHF Orig and NHF Swap are always 100%.
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JGA Coref JGA PI cJGA SDI cJGA NED cJGA NoHF Orig NoHF Swap

CLS TripPy (2020) 60.0 ± 0.4 6.9 ± 0.8 75.3 ± 0.5 63.3 ± 1.0 46.6 ± 1.4 100 ± 0 100 ± 0
ConvBERT-DG (2020) 58.6 ± 1.4 8.6 ± 1.3 73.6 ± 0.6 68.3 ± 0.8 26.6 ± 3.3 100 ± 0 100 ± 0

GEN

SimpleTOD (2020) 31.6 ± 0.4 4.3 ± 0.3 79.2 ± 0.9 56.1 ± 0.8 33.5 ± 1.2 92.6 ± 0.4 91.0 ± 1.1
BART-DST (2020) 56.7 ± 1.8 12.9 ± 0.9 84.4 ± 1.2 63.2 ± 1.7 43.5 ± 2.0 97.4 ± 0.5 95.7 ± 0.5
SOLOIST (2021a) 62.2 ± 0.5 12.9 ± 0.2 86.0 ± 0.3 68.2 ± 0.3 50.4 ± 0.5 98.6 ± 0.1 98.5 ± 0.4
MUPPET-DST (2021) 55.5 ± 0.2 11.2 ± 0.6 84.2 ± 0.4 71.2 ± 0.9 34.4 ± 1.2 97.4 ± 0.2 84.2 ± 1.0
PrefineDST (Ours) 60.2 ± 0.2 12.1 ± 0.4 85.2 ± 0.2 67.9 ± 0.5 48.7 ± 0.3 98.0 ± 0.2 97.9 ± 0.4

Table 4: CheckDST results on MultiWOZ 2.3 few-shot training as described in Section 3.1. The
few-shot dataset only contains single-domain conversations and therefore these results are not meant
to be directly compared with results in Table 2. We annotate the table the same way as the full-shot
table.

C PREFINEDST DETAILS

C.1 IMPLEMENTATION DETAILS

Task formulation. We take the same approach as T0 in uniformly formatting all datasets, reusing
prompts for tasks that are already used for T0 and designing new ones for those that are not. For each
example from a dataset, we randomly sample from a corresponding set of instruction templates and
modify each sample according to the chosen template.

Prompts. For tasks that are not used in T0 such as WikiSQL Zhong et al. (2017) and SGD Rastogi
et al. (2020), we modify applicable prompts from different tasks to create at least five different prompt
templates for each task. One of these templates are randomly chosen for training time and inference
time. The random seed is changed during training time but kept the same at test time to ensure
replicability.

Training details. Following Sanh et al. (2021), we do not adjust the sampling rate based on the
sample size of each task that we multitask with during prefinetuning. Since all tasks are formatted
as a sequence-to-sequence generation task, we do not need any additional layers as was needed
for MUPPET nor form heterogeneous batches that contain samples from multiple tasks. For the
prefinetuning step, we do a hyperparameter search with only five different learning rates and keep the
batch size at 64 per GPU to find the model with the lowest loss value on the test set. We use 8 A100
GPUs and train for 10 epochs, early stopping on the loss value of the validation set with a patience
of 3. This process amounts to a total of approximately 400 GPU hours. We get best results with a
learning rate of 1e−5.

Then, we finetune the prefinetuned model. We vary both the learning rate and the batch size and
train for 10 epochs on a single A100 GPU, running five iterations with different seed values, after
which we choose the checkpoint with the best JGA on the validation set. The best performing model
uses a batch size of 4 and learning rate of 5e−5 for the full-shot setting and 1e−5 for the few-shot
setting. This amounts to about 170 GPU hours in total. We use ParlAI Miller et al. (2017) for all of
our experiments.

C.2 PREFINETUNING TASKS

We choose prefinetuning tasks based on their intuitive potential for improving on qualities measured by
CheckDST. They can largely be categorized into copying, paraphrase classification, and coreference
resolution tasks.

Copying. One of the key skills required for DST that seemed difficult to apply for out-of-domain
samples is copying the correct entities mentioned in the conversation to the slot values. This skill is
relevant to many other natural language understanding tasks that provide multiple candidates that can
be chosen for copying, e.g., question answering and structured text generation such as text-to-SQL.
To teach better copying skills, we include SQuAD v2.0 Rajpurkar et al. (2018), CoQA Reddy et al.
(2019), WikiSQL Zhong et al. (2017), and Schema Guided Dialogue (SGD) Rastogi et al. (2020).

Paraphrase Classification. To internalize an understanding of semantic similarities such that the
downstream model become robust to paraphrases, we leverage two paraphrase classification tasks:
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Figure 6: PrefineDST takes the same approach as T0 Sanh et al. (2021) for prefinetuning (above
dotted line) and then adds a finetuning step for a downstream task (below dotted line).

The Microsoft Research Paraphrase corpus Dolan & Brockett (2005) and the Quora Question Pairs
corpus Chen et al. (2018).

Coreference Resolution. With the expectation that seeing examples that require coreference
resolution from other tasks will also help solve cases that need the same skill in DST, we include
coreference resolution tasks to our prefinetuning step. We use the Winograd Schema Challenge
(WSC) dataset Levesque et al. (2012) from the SuperGLUE benchmark Wang et al. (2019) and
Winograd NLI (WNLI) Wang et al. (2018). /The difference changes the entity that the pronouns in
the sentence must resolve to.

C.3 PREFINETUNING TASK DETAILS

The full list of tasks that we use for the prefinetuning step is summarized in Table 5.

Dataset Type Train / Valid / Test Size Targeted CheckDST metrics
MSR Dolan & Brockett (2005) Paraphrase 4,076 / 862 / 863 PI cJGA
QQP Chen et al. (2018) Paraphrase 305,408 / 38,176 / 38,176 PI cJGA
WSC* Levesque et al. (2012) Coref 554 / 104 Coref JGA
WNLI* Wang et al. (2018) Coref 635 / 71 Coref JGA
SQuAD v2* Rajpurkar et al. (2018) Q&A 130,319 / 11,873 NEI cJGA, NoHF
CoQA* Reddy et al. (2019) Q&A 108,647 / 7,983 NEI cJGA, NoHF, Coref JGA
WikiSQL Zhong et al. (2017) Text-SQL 56,355 / 8,421 / 15,878 NEI cJGA, NoHF
SGD Rastogi et al. (2020) TOD 164,982 / 24,363 / 42,297 NEI cJGA, NoHF, Coref JGA

Table 5: A summary of prefinetuning datasets that we use for PrefineDST. *These datasets do not
have a separate test set. We reuse the validation set for these datasets.
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