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ABSTRACT

The field of bibliometrics, studying citations and behavior, is critical to the dis-
cussion of reproducibility. Citations are one of the primary incentive and reward
systems for academic work, and so we desire to know if this incentive rewards
reproducible work. Yet to the best of our knowledge, only one work has at-
tempted to look at this combined space, concluding that non-reproducible work
is more highly cited. We show that answering this question is more challeng-
ing than first proposed, and subtle issues can inhibit a robust conclusion. To
make inferences with more robust behavior, we propose a hierarchical Bayesian
model that incorporates the citation rate over time, rather than the total num-
ber of citations after a fixed amount of time. In doing so we show that, un-
der current evidence the answer is more likely that certain fields of study such
as Medicine and Machine Learning (ML) do correlate reproducible works with
more citations, but other fields appear to have no relationship. Further, we find
that making code available and thoroughly referencing prior works appear to also
positively correlate with increased citations. Our code and data can be found at
https://github.com/EdwardRaff/ReproducibleCitations.

1 INTRODUCTION

A reproducibility crisis has been called for many scientific domains, including artificial intelligence
and machine learning (Donoho et al., 2009; Baker, 2016; Hutson, 2018; Vul et al., 2008). It is
paramount that all disciplines work to remedy this situation and push for reproducible work both
as good science, and to mitigate such crises. Such work has begun in various fields with different
strategies (Errington et al., 2021; Poldrack, 2019; Collaboration, 2015; Sculley et al., 2015; Gardner
et al., 2018), yet the incentive structure around producing reproducible work has received almost
no attention. We note that the difference in terminology between reproduction and replicating is
long, with conflicting terminology across fields and years (Plesser, 2018), we will use both terms
interchangeably as our study focuses exclusively on cases where a different team independently
performs the same experiments to obtain the same/similar results.

Citations are the primary reward for academic outputs, and to our knowledge only the work of Serra-
Garcia & Gneezy (2021) has ever considered studying the relationship between papers that repro-
duce and the number of citations received. They used data on replication results from the fields of
Psychology (Collaboration, 2015), Economics (Camerer et al., 2016), and Social Sciences (Camerer
et al., 2018). Distressingly, they conclude that non-reproducing work is cited more than reproducing
works.

Our work revisits this hypothesis and data, and draws a different conclusion. We will show in
section 3 that there are methodological issues that prevent a robust conclusion from being formed
with the data and approach presented in (Serra-Garcia & Gneezy, 2021). Next, we will propose
a Bayesian hierarchical model to alleviate these issues and allow further insight into the cita-
tion/replication question by incorporating a model of the citation rate changing over time in sec-
tion 4. In section 5 we show our model is a significantly better fit to the data, and concludes that
citation rate is unrelated or positively correlated with reproduction success, depending on the field
being studied. Finally, we will conclude in section 6.

1

ar
X

iv
:2

20
4.

03
82

9v
1 

 [
cs

.D
L

] 
 8

 A
pr

 2
02

2

https://github.com/EdwardRaff/ReproducibleCitations


ML Evaluation Standards Workshop at ICLR 2022

2 RELATED WORK

The study of paper citation has a long and multi-disciplinary history (Lotka, 1926; Shockley, 1957;
Price, 1965; 1976; Potter, 1981; Redner, 1998), with many works proposing different power law
variants to describe the distribution of citations. Most work that has looked at citations over time are
looking at population level changes in citation distributions (Bornmann & Mutz, 2015; Varga, 2019;
Wallace et al., 2009). We are aware of only one prior work that looked at the citation rate by year
through studying the impact of publication-vs-arXiv (Traag, 2021). This work also modeled citation
rates as a Poisson, similar to Serra-Garcia & Gneezy (2021), which we will argue is an inappropriate
model for citation count data.

Used by Serra-Garcia & Gneezy (2021) were negative citations, a type of citation classification that
can provide further insight into behaviors and results. The taxonomy of citation types, their labeling,
and prediction (Kunnath et al., 2022) are another lens through which insight may be gained, but is
beyond the scope of our study.

Dietz et al. (2007) produced one of the first applications of Bayesian modeling to the study of
citation behavior and influences. Our task is different, and so our model bares little resemblance, but
the overall strategy we argue is worth further study. Several latent factors exist in bibliometric study
to which modern machine learning may yield benefits, and the scale of bibliometric data provides
fertile ground to new and technical challenges to advance the field.

3 ISSUES WITH EXISTING MODELING

While the Negative Binomial model has been previously identified to empirically have better perfor-
mance at citation prediction (Thelwall & Wilson, 2014), the Poisson model is still very popular. We
note though that there is an easier way to show the Poisson model is in fact, inappropriate, for the
bibliometric research it is used. The Poisson model assumes the mean and variance are equal, and if
the variance is larger than the mean, the model suffers from overdispersion that prevents meaningful
results. A statistical test (Cameron & Trivedi, 1990) confirms with p < 0.001 that this is the case
for citation data, which in the data from (Serra-Garcia & Gneezy, 2021) has a mean of 438 citations
but a variance of 504,639.

While Serra-Garcia & Gneezy (2021) used the Poisson model in their work on the connection be-
tween replication and reproducibility, we note there are additional factors that lead us to challenge
their initial conclusion. The first is a data issue of reproducibility itself: N = 80 documents were
noted in (Serra-Garcia & Gneezy, 2021), but the data provide N = 139 instances. We are unable
to determine the correct selection criteria1 to render only 80, and so proceed forward with the larger
number of samples.

Table 1: Results indicating if successfully reproduced papers have more (positive) or less (negative)
citations than papers that failed to reproduce. Models tested include Poisson verse NegativeBinomial
(NB) regressions using the original three domains with Google Scholar (GS) or Semantic Scholar
(SC) citations each, and an additional case using SC with a fourth set of reproduction results from
the Medical domain (+M).

Poisson-GS Poisson-SC Poisson-SC+M NB-GS NB-SC NB-SC+M

coef p coef p coef p coef p coef p coef p

Reproduced 0.0172 0.129 0.1138 <0.001 0.5775 <0.001 0.0172 0.150 4.4592 <0.001 0.5777 0.004

To demonstrate the lack of robustness to the prior methodology, we will perform several repetitions
of the overall approach choosing between:

1. Using the Poisson model versus a Negative-Binomial model

1The authors graciously spent considerable time working with us, and we did not have the same software
licenses to use their saved results. One hypothesis from the authors was that non-significant results were ex-
cluded, but only removed 16 samples when we went through the data provided. Cross-discipline reproducibility
and data sharing standards poses an interesting question beyond our scope.
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2. Using the original Google Scholar (GS) citation count data provided vs citation data from
Semantic Scholar (SC)

3. Using the original data with (SC) additionally with reproduction results from the Medical
domain, adding a fourth field (+M).
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Figure 1: Correlation between Google Scholar and
Semantic Scholar in the number of citations for
each document per year. After multiple-test cor-
rection all years were significantly correlated with
p < 0.001 in all cases.

This provides six total results, presented in Ta-
ble 1 using (Seabold & Perktold, 2010). We
can see in that no case do we observe a nega-
tive indication that papers which fail to repli-
cate are cited more. However, we do see
inconsistent conclusion about the impact of
replication itself. When using Google Scholar
the conclusion is there is no relationship, and
when using Semantic Scholar the conclusion
is a strong relationship. This challenge is not
a factor of these citations sources having dra-
matic disagreement, as can be seen in Figure 1
both are highly correlated in the per-year cita-
tions of the documents. This issue is instead
that of model fit, as the highest adjusted R2

fit amongst the Negative Binomial models is
0.0039.

The source of this discrepancy is inappropriate
merging of all data sources into one pool. The
papers selected from Economics, Psychology,
Social Science, and Medicine where all se-
lected with biases toward higher citation rates
— largely through selection of high impact
factor sources. The citation rate per field, or journal, are not the same, as shown in Figure 2. Imbal-
ances in the number of papers from each source that happened to replicate or not amplify spurious
noise, resulting in low model fit and unstable conclusions.
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Figure 2: Total number of citations accumulated for replicated and failed to replicate papers grouped
by field (left) and journal (right).

4 METHODOLOGY

To address these problems, we propose a Bayesian hierarchical model that incorporates the citation
rate over time, rather than the cumulative total number of citations. Our interest in citation rate over
time is of interest not merely for model fit, but primarily because we are interested if the types of
citation patterns vary between reproducible and non-reproducible papers. That is to say, some papers
do not start to accumulate citations for a considerable amount of time, others reach a steady-state of
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citations, and others reach a peak citation rate before their citation rate drops. A total-citation rate
model can not reveal anything about this question.

Reproducable

Citation StylesField Observations

Ridge Penalty

β Reproducable

α

ωβ Reproducable Prior Gate Mean Prior

Gate

Gate Concentration Prior

φ

Obs

zShiftBasebias

Figure 3: Plate diagram of our proposed citation-replicated model. The observations are done
against a Negative-Binomial model.

The high level plate diagram of our approach is presented in Figure 3, which we will discuss at
a high level with the detailed generative story given by Algorithm 1. The coefficients β are with
respect to each Field, with a hierarchical prior used over then and a shared ridge regression penalty
(variance of the Gaussian distribution).

NegBinomial2(n |µ, ϕ) =

(
n+ ϕ− 1

n

) (
µ

µ+ ϕ

)n (
ϕ

µ+ ϕ

)ϕ
. (1)

The observations are done with respect to a zero-inflated Negative-Binomial model, parameterized
with a mean and dispersion factor µ and ϕ as shown in Equation 1. The zero-inflation serves two
purposes. First, some papers do receive zero citations for some time before becoming popular,
and the zero-inflation model prevents down-weighting the citation rate µ from these zero citations.
Second, it allows us a convenient way to handle the fact that papers were published at different times,
and thus for a desired horizon of T years not all papers will have T years of existence to accumulate
citations. When a year has not yet occurred, we force the zero inflation gate to effectively mask
the year with no impact on the model. We used a target of T = 10 years in all cases. Each paper
receives it’s own gate value with a hyper prior shared over all samples. We use the proportional Beta
hyper prior as shown in Equation 2 with a non-informative prior over µ.

BetaProportion (θ | µ, κ) =
1

B(µκ, (1− µ)κ)
θµκ−1(1− θ)(1−µ)κ−1 (2)

To represent the impact of the t’th year’s citation rate of the i’th sample µi,t we model a base citation
rate µi modulated by an annual base citation multiplier sampled from a Gamma prior centered at
a mean of 1.0 (i.e., no change in annual citation rate). The impact of the compounding base rate
can be delayed (but not increased, as that implies pre-publication citations) by a shift factor samples
from a positive Laplacian scaled so that the entire T years may be selected by the prior would prefer
no shift.

We do not give each sample it’s own base and shift as it allows significant over-fitting of the model
to ignore the impact of the coefficients β. Instead we use a Dirichlet process to sample from a pool
base/shift pairs — where reproducible and non-reproducible papers each receive a separate Dirichlet
process sampling from the same pool. We enforce a sparse process by putting a Beta prior over the
α parameter of the processes so that we may see if there is a difference in the types of citation styles
between papers (e.g., do non-replicating papers more frequently have decaying base rates < 1). In
each experiment there is one pool of base/shift pairs, and two sets of distributions ω over those
pools. One ωS for reproduced papers and one ωF for the non-reproduced. In this way the model can
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inform us if there appears to be a difference (ωS 6= ωF ) in citation styles (base/shift pairs) between
the populations.

Algorithm 1 Our Hierarchical Bayesian generative story for modeling citation rates. The + indicates
distributions truncated to be non-negative.
Require: N observations with ri ∈ {S, F} for successful or failed reproduction and fi indicating

the field of research for the paper.
λridge ∼ HalfCauchy(0,1)
α ∼ Beta(1, 10) .A Beta distribution used to encourage sparse solutions
ωS ∼ Dirichlet(α) .A different distribution over all base/shift values for reproducible . . .
ωF ∼ Dirichlet(α) .and non-reproducible papers
for all i ∈ 1, . . . ,∞ do .Citation Styles for ω∗ will sample from

shift ∼ Laplace+(0, years out/6)
base ∼ Γ(100, 100) .This Gamma distribution will encourage values near 1, as values ¿ 2

are undesirable in being unrealistic.
end for
β̂field ∼ N (0, 1) .Hierarchical Reproducible Prior
for all Field of Study i do

βfield
i ∼ N (β̂field , λridge)
bi ∼ Cauchy(0, 1) .Bias term is independent between Fields

end for
ĝateµ ∼ U(0, 1) .Uninformative prior on the mean rate of no citations occurring.
ĝateκ ∼ Γ(1, 20)
ϕ ∼ Cauchy+(0, 5)
for all Observations i do

z ∼ Categorical(ωri ) .Select the citation style base/shift for this sample based on the
distribution w.r.t. the sample replicating or not

log(µi)← βfield
fi
· 1[ri = S] + bfi .The rate is modified based on the paper replicating or

not.
gatei ∼ BetaProportion(ĝateµ, ĝateκ)
for all Time steps t do

µi,t ← µi · basemax(t−shiftz,0)
z

accumulate Zero-Inflated Negative Binomial loss NetBinomial2(yi|µi,t, ϕ) with gate
probability gatei

end for
end for

The full model is detailed in Algorithm 1. We use NumPyro (Phan et al., 2019) to implement the
model with the NUTS sampler (Hoffman & Gelman, 2014). In all cases we use 500 burn-in iterations
followed by 2,250 steps with a thinning factor of 3.

5 RESULTS

Now that we have specified our approach to understanding how citations may be impacted by a
paper’s ability to replicate, we will present out results in two sections. First we will consider the
results with respect to the previous fields of study (Medicine, Economics, Psychology, Social) and
show that we obtain consistent results and reasonably believe them to be a more reliable model.
Second we will repeat the study applied to data from machine learning (Raff, 2019). This data is
studied separately because it has a different kind of selection bias, and a different set of available
features to consider, than the other data.

5.1 SCIENCE RESULTS

We begin by examining the conclusions inferred by our model on the three versions of the data,
Google Scholar, Semantic Scholar, and Semantic Scholar with the medical domain added. The
results can be found in Figure 4, showing consistent conclusions of no correlation between field and
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citation rate of reproducible papers for any of the three original fields. When Medicine is added we
observe that it does show high citation rate for reproducing papers, without changing the conclusion
of the other fields.
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Figure 4: The results of the coefficients β for the different Fields of study when using Google Scholar
data (left), Semantic Scholar (middle), and Semantic Scholar with the addition of the medical papers
(right). The x-axis is coefficient value and the forest plot shows the estimated value and 95% credible
interval.

Beyond the consistency of the conclusions, we are further confident in our approach’s conclusions
due to better model fit. The Google Scholar case producing anR2 = 0.41, and the Semantic Scholar
data with/without the Medicine papers at R2 = 0.24 and 0.19 respectively. We arguably would not
expect very high R2 values considering the model is characterizing populations of citation rates
based only on the field, as prior work focusing on predicting citations using venue, author, and
content information achieved R2 = 0.74 (Yan et al., 2011).

This approach has also provided further insight into the nature of reproduction and citations, that the
reward behaviors are not consistent across fields (subject to unobserved confounders). The question
then becomes: do reproducible papers have a different style of citation patterns (i.e., accumulating
or decreasing citation rates at a different pace) compared to no reproducible work?
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Figure 5: The discovered latent citation styles and their proportion of use in reproduced and failed to
reproduce papers (left) and the log multiplicative effect of the citation rate over time (right). Note the
right legend shows “Citation Style, Mean Occurrence Rate of the Style”. The y-axis is a symmetric
logarithm scale with linear behavior in the [−1, 1] range, where 0 indicates no change in the citation
rate. Error bars are the 95% credible interval inferred by the model.

Per the design of our model, in Figure 5 we can investigate the citation rates over time as inferred
by our model, shown for the Semantic Scholar + Medicine case. In this instance we do not observe
any difference in the citation rates or style between (non)reproducing papers. A maximum of 50
components were allowed for computational tractability, and non-present components are ones the
model learned to discard with near-zero probabilities. We note of particular interest that most latent
citation styles only have an impact starting two years out from publication, a result consistent with
prior work which found the first two years of citations to be highly predictive of the long-term
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cumulative number of citations (Stegehuis et al., 2015). This provides another degree of confidence
in the validity of our general approach, though we do not make claim that our simple model of
citation rate is the best possible choice.

The data is also interesting in that we observe behaviors not normally discussed in bibliometric
literature: papers who’s citation rate decreases with time. This is indeed not directly observable in
the common modeling approach of looking at cumulative citations after a point in time. We further
find citation style 29 uniquely interesting as a “runaway success”, quickly multiplying the citation
rate by exp(10) ≈ 104.35 after ten years.

5.2 MACHINE LEARNING RESULTS

Having shown our model allows for more robust conclusions around the impact replicatiable results
has on citation rate, we turn to the machine learning reproductions documented by Raff (2019).
Many of the papers were selected by the author’s personal interests, rather than impact factor, so we
do not find it appropriate to include it in the same hierarchical model. The ML data also includes
numerous other quantification’s about the paper not present in the prior section, so we treat it sep-
arately. We use the same approach without a hierarchical prior over field since it is one population
of papers. The adjusted R2 of the model is 0.31 using Semantic Scholar for the citation data, inline
with the prior experiments.
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Num References
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Figure 6: Forest plot of the coefficients β of various features, with 95% credible intervals.

The results Figure 6 show that reproducible papers, and papers that make their code available, both
receive higher rates of citation. The former is desirable, and the later indicates a strong motivation
for authors to open source their code beyond the arguments around replication (Kluyver et al., 2016;
Claerbout & Karrenbach, 1992; Callahan et al., 2016; Errington et al., 2021; Forde et al., 2018). The
sharing of code is generally argued to be beneficial, but we do note that it captures methodological
flaws as well — and is thus not a panacea to concerns around reproduction (Dror et al., 2019; 2017;
2018; Sun et al., 2020; Bouthillier et al., 2019; 2021). We are also encouraged that more references
per page has a higher citation rate, under the belief this corresponds to more thorough documentation
of prior work and good scholastic behaviors.

The reduced citation rate for Conceptualization Figures, which attempt to convey the intuition of
a method, is interesting. Raff (2019) noted no relationship between this variable and replication,
while later work found that papers which use conceptualization figures take less time/human effort
to reproduce (Raff, 2021). This type of scientific communication appears to have a particularly
complex relationship with reproduction and the incentives around reproduction that thus warrants
further study.
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The last points of note are that publishing in Journals, and more tables appear to increase citation
rate while publishing in a workshop reduces it. Publishing in a workshop having a lower citation
rate makes sense intuitively, though it is perhaps interesting that tech reports (like arXiv) have no
relationship — and it is worth studying whether workshops being a final “home” for a paper may
have a negative perception. This result is also possible due to the noted bias in the data, which we
believe may explain the result that Journal publications have a higher citation rate, since ML as a
field generally prefers conferences over journals. Last, we have no particular intuition about why
having more tables per paper may lead to more citations — unless it is a matter of making it easy
for future papers to re-use the reported results, a hypothesis proposed in (Raff, 2019).
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Figure 7: The discovered latent citation styles and their proportion of use in reproduced and failed to
reproduce papers (left) and the log multiplicative effect of the citation rate over time (right) for the
Machine Learning data. Note the right legend shows “Citation Style, Mean Occurrence Rate of the
Style”. The y-axis is a symmetric logarithm scale with linear behavior in the [−1, 1] range, where 0
indicates no change in the citation rate.

Last, we look at the latent citation patterns again in Figure 7, and note that style 29 does has a
significant difference between reproducible and non-reproducible works2. By chance this compo-
nent again represents a “runaway success”, indicating a preference for degree of success toward
reproducible works.

6 CONCLUSION

Our results are overall encouraging toward the question of replication and citation: citations are
positively correlated or are independent of replication, which is better than the prior hypothesis that
non-reproducible works get more citations. Our results for machine learning in particular indicate
that citations correlate positively with further desirable behaviors like thorough citations and sharing
of code. This work has furthered the bibliometric study of the interaction between citation rate and
replication, and we note further valuable directions remain. A large amount of data without ground-
truth replication success exists to merge into such analyses, as well as the possibility of using natural
language processing to make inferences about paper replications by the content of citing documents.
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A APPENDIX

We note that we have released a modified version of the ML citation data at the URL specified.
In initial release of the data we kept paper titles withheld due to concern that marking nearly 100
papers as “not reproducible by this author in their attempts” would be misconstrued as “not repro-
ducible”, cause potentially high stress for junior authors in the list, and meet with potential acrimony
at large. While we believe time may have cooled some concerns, the large number of initial emails,
sometimes heated, about the work makes us fear that such self-censorship was unfortunately the
best choice of action. As such we are striking a balance that in releasing a version of the data with
citations by year, would be too trivially easy to determine the entire author list.

As such a small amount of noise has been added such that the results are generally identical in re-
running the analysis, but keeps the reverse of the names at least not completely trivial. Our hope
was to use differential privacy to perform a more robust release, but the nature of citation count
data meant that the amount of required noise had a hugely detrimental impact on the results that
prevented any replication.

We hope the reader will understand that balance we are trying to make, and that the data is still
useful.
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