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ABSTRACT

Machine Learning has been applied to pathology images in research and clinical
practice with promising outcomes. However, standard ML models often lack the
rigorous evaluation required for clinical decisions. Machine learning techniques
for natural images are ill-equipped to deal with pathology images that are
significantly large and noisy, require expensive labeling, are hard to interpret, and
are susceptible to spurious correlations. We propose a set of practical guidelines
for ML evaluation in pathology that address the above concerns. The paper
includes measures for setting up the evaluation framework, effectively dealing
with variability in labels, and a recommended suite of tests to address issues
related to domain shift, robustness, and confounding variables. We hope that the
proposed framework will bridge the gap between ML researchers and domain
experts, leading to wider adoption of ML techniques in pathology and improving
patient outcomes.

1 INTRODUCTION

Pathology is often treated as a ground-truth for many serious diseases and a pathologist’s diagnosis is
critical for a wide variety of tasks, including drug development and clinical diagnostics. The typical
workflows of a pathologist are complicated, subjective and limited by what humans can evaluate.
The use of machine learning in pathology has begun to transform the field with applications like
clinical decision support tools (Campanella et al., 2019), improving prognostic utility over manual
reads (Taylor-Weiner et al., 2021), automating slide scoring in clinical trials (Glass et al., 2021),
novel biomarker discovery (Echle et al., 2021), and understanding tumor pathology (Jiang et al.,
2020; Diao et al., 2021).

These models require thorough validation and verification since they directly impact patient lives
and their evaluation requires a careful look at the setting in which they will be deployed. Pathology
images also differ from natural images in various ways - they are massive in resolution (billions
of pixels) with each magnification-level containing markedly different information (Komura &
Ishikawa, 2018), have different equivariances from natural images (Veeling et al., 2018) and contain
stain variations which can confound models (Yagi, 2011; Madabhushi & Lee, 2016; Tellez et al.,
2019). In addition to that, exhaustive labeling of these images is prohibitive as they require expert
annotations and are time-consuming. Finally, building ML models for these problems requires
understanding of biological causal structures to deal with spurious features (Castro et al., 2020).
These differences necessitate model evaluation guidelines specific to pathology problems to prevent
life threatening model failures.

In machine learning, dataset creation, evaluation setup, choice of metrics, and the data splits used for
training, validation and testing have been areas of study in themselves, and the research community
depends on agreed standards for evaluating novel methods and their utility in the real world. Previous
work in medical imaging has highlighted problems in transferring these evaluation methodologies,
making models brittle for deployment in real-world setting (Park & Han, 2018; England & Cheng,
2019; Varoquaux & Cheplygina, 2021; Reinke et al., 2021). In this work, we propose a guideline on
ML model evaluation for pathology which go beyond standard ML metrics. We define how to setup
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Figure 1: Guidelines for Model Evaluation

the evaluation framework, create the test-set, acquire labels for evaluation and finally suggest a set
of evaluation metrics which are aimed towards real-world deployment.

2 GUIDELINES FOR MODEL EVALUATION

We divide model evaluation into three stages: evaluation setup, label collection, and evaluation
metrics as shown in Figure 1. We provide pathology-specific recommendations for each of them in
the following sections.

2.1 EVALUATION SETUP

2.1.1 ALIGNMENT OF EVALUATION EXPERIMENTS WITH MODEL’S INTENDED USE

The applications of ML in pathology vary by their intended use, such as drug discovery, diagnostics,
prognostics, decision-support, or triage. Therefore, their evaluation setup and metrics must account
for the targeted use-case. For example, a clinical decision support tool is used by pathologists to
look at predictions generated by the model to refine their diagnosis. The evaluation setup must
measure the change in pathologist performance when assisted by the model instead of comparing
model predictions against that of the pathologist.

Another example is the use of ML in building a triage tool for screening patients. In oncology, ML
can be used to filter out obviously benign cases so that the pathologists prioritize malignant cases,
thus improving patient care. In such scenarios, instead of using common metrics like accuracy or
AUROC, one should use Precision@K%Recall due to the low tolerance for a false negative.

2.1.2 ENRICHED AND CONFOUNDER-AWARE TEST SET CREATION

Pathology samples come with biological and other metadata like patient-related (age, gender,
ethnicity), image-related (scanner type, image format, magnification), specimen & stain related
(tissue collection type, thickness of specimen, staining protocol), and clinical (disease stage,
prescribed therapy, omics data). Low prevalence of certain metadata values coupled with small,
imbalanced datasets in pathology often lead to overoptimistic results if the test set composition does
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not account for smaller substrata. This hidden stratification problem (Oakden-Rayner et al., 2020)
can result in the model not working well for patients belonging to a hidden substrata, which in turn
deteriorates trust in such tools. Another stratum which needs more representation is samples close
to the decision boundary where significant ambiguity in labels exist. This occurs since labels in
pathology represent a biological process which is continuous. For example, along with benign
and malignant there exist borderline cases which might be under-represented if real-world data
distribution is replicated in test dataset.

A related problem is the presence of confounders in the test set which are spuriously predictive of
the label. For example, in pancreatic cancer, (Kather et al., 2020) show that KRAS mutation can
be predicted from a pathology image. However, KRAS mutation is almost exclusively present in
only one sub-type of pancreatic cancer (pancreatic ductal adenocarcinoma), thus becoming a strong
biological confounder (Waters & Der, 2018). Therefore, even a well performing mutation prediction
model might be relying on pancreatic sub-type features instead of the KRAS mutation features. The
fact that these confounders can also be partial, non-biological and specific to the dataset, further
complicates matters (Badgeley et al., 2019; Larrazabal et al., 2020; Zech et al., 2018).

To ensure that the test-set is reliable and the model is predicting the variable of interest and not a
confounder, we offer the following suggestions:

• Curate test sets such that they have enough representation of any sub-strata of data that we care
about or that could be a confounder (Seyyed-Kalantari et al., 2020). This can be done through
enrichment (oversampling) of rare substrata as mentioned in this FDA guide (Food et al.). However
practitioners should be aware of selection bias due to test-set enrichment (Yu & Eng, 2020).

• Incorporate stratified evaluation metrics as opposed to a single test-set wide global metric. For
example, ensuring consistent performance across patient demographics or disease severity.

• Conduct a correlation check on all metadata values present in the dataset to see if any of them
correlate highly with label values for the task of interest. For example, if all images positive for
prostate cancer come from the same hospital, the model can learn to predict the hospital instead of
the cancer, making it a potential confounder.

2.1.3 EXTERNAL HOLD-OUT TEST SET

Curated datasets are useful for research, but often suffer from the problem of a homogeneous test-set.
The approach of collecting data from a single source and splitting it into train-val-test sets results
in inflated performance since the models might not generalize to distributional shifts (like images
from a new hospital) (Tellez et al., 2019; Campanella et al., 2019). Many popular pathology datasets
(Borkowski et al., 2019; Hosseini et al., 2019; Karimi et al., 2019) and studies (Shao et al., 2021;
Sudharshan et al., 2019) do not have externally held-out test sets from a new site which prevent an
evaluation of the generalizability. We suggest using multiple held-out patient cohorts from different
medical sites and demographics while constructing the test set (Koh et al., 2021). We also suggest
checking for test data leakage in the form of patient samples being present across multiple splits.
Finally, we urge the community to make such a testing setup the norm for model evaluation in
pathology.
Figure illustrates the discordance among pathologists while grading NASH, an aggressive form of
non-alcoholic fatty liver disease increasingly being seen as an epidemic in the US. In this case,
NASH severity is found by performing a liver biopsy, viewing the extracted tissue through a
microscope and observing signs of disease progression such as presence of fat, different kinds of
inflammation etc.

What is most telling in this figure is the extremely low agreement among doctors while predicting
disease progression even after using the most reliable way to do so, which is viewing the tissue
extracted from the biopsy. The numbers on the left column denote the Kappa score for different
morphological indicators of NASH (N denotes the number of patients), when the first study was
done in 2005. The right column shows the agreement scores for the same from a 2020 study; there
has been little or no change in these agreement scores among human experts even after 15 years.
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(a) Figure illustrates the discordance among human
experts while grading NASH from pathology images.
NASH is an aggressive form of non-alcoholic fatty liver
disease increasingly being seen as an epidemic in the
US. Kappa score (agreement score) among pathologists
for different morphological indicators of NASH are
shown 15 years apart; there has been no improvement
in pathologist consensus.

(b) Variations in pathology images across
scanners and lab sites. The first row
shows the same slide scanned with
different scanners with visually perceptible
differences. The second row shows slides
collected from the same scanner but different
lab sites, which differ visually due to staining
protocols, choice of reagents, method of
specimen preparation and so on. Models
struggle to generalize to these variations

Figure 2

2.2 EVALUATION LABELS

It is possible to get fast and cheap labels using crowdsourced tools for natural images, and the
correctness of these labels is easily verifiable. In contrast, it is a lot harder to collect ground-truth
labels for pathology. Pathology images have billions of pixels, millions of cells, and thousands
of regions of interest, making label collection extremely resource-intensive. Annotators (typically
certified pathologists) are in short supply and per unit cost of annotations is order of magnitude
higher than natural images. Annotators also have their own biases (Aeffner et al., 2017).

A more insidious problem is of the high ‘inter-annotator variability’ (Carrasco-Zevallos et al., 2021)
as shown in Figure 2a, and ‘intra-annotator variability’ (Kleiner et al., 2005; Davison et al., 2020):
annotators disagree not only with each other but also with their past selves. These variabilities exist
at different stages of label generation - they can originate from inherent ambiguity in the labeling
system, different interpretations of the same labeling scheme by different experts, and the differences
in the expertise of these annotators (Ozkan et al., 2016). The threshold for acceptable variability is
subjective, and depends on factors such as the particular organ and disease.

We propose the following guidelines while collecting labels:

• Collect multiple annotations per image and measure the inter-annotator agreement. If possible,
collect multiple annotations on the same image from the same annotator at adequately-spaced
timepoints (called ‘washout period’) to measure intra-annotator variability. If these variabilities
are high, the ML task might not be viable.

• Aggregate the labels to a single consensus if the intra and inter-annotator variabilities are low.
Instead of comparing model performance with a single pathologist (Liu et al., 2017) or consensus,
measure the agreement of the model with the consensus and judge it against inter-annotator
consensus. This is more realistic and appreciates the difficulty of the task as judged by human’s
inability to do it consistently (Raciti et al., 2020). Kappa (Linear, Quadratic) and Intraclass
Correlation Coefficient(ICC) are popularly used to measure single and multi-rater agreement
Bulten et al. (2022); Koo & Li (2016).

2.3 EVALUATION METRICS

2.3.1 REPRODUCIBILITY, REPEATABILITY, & ROBUSTNESS TESTS

Pathology images are heterogeneous with regard to staining, tissue thickness, and are prone to
variations during tissue processing, cutting, staining, and digitization (Figure 2b). These variations
cause minor visually perceptible changes to the image, but can drastically change the model
prediction. Lack of robustness to these perturbations poses a major challenge to the wider adoption
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and use of ML in pathology, especially in a clinical setting (Schömig-Markiefka et al., 2021).
Accuracy based assessment of models, although necessary, is not sufficient for capturing model
generalization. Following tests must be incorporated into the model evaluation framework to assess
model’s robustness to these variations:

• Reproducibility Tests: Models must be tested under known sources of variations and evaluated for
consistency and accuracy in performance. This includes testing by explicitly changing external
variations such as staining & scanning, variations associated with hardware (non-determinism in
GPU) and software packages. Models in pathology are usually trained on smaller patches of
the image due to their large size (Shao et al., 2021; Taylor-Weiner et al., 2021). Stochasticity
introduced due to sampling the patches can lead to inconsistent predictions and robustness to this
variability must also be reported.

• Repeatability Tests: Repeatability expresses the precision under the same operating conditions
over a short interval of time (FDA, 1995). This test captures unknown & unaccountable variations
that are not covered by reproducibility tests. Consistency in model predictions must be measured
and reported by rescanning & rerunning inference on the same image multiple times, keeping all
known sources of variations constant.

• Robustness to Perturbations: Creating test sets that capture all possible real-world variations of
images is not practical. An alternative can be to evaluate robustness on synthetically generated
perturbations inspired by real world variations to image samples, by measuring consistency of
predictions across these perturbations (Hendrycks & Dietterich, 2019; Schömig-Markiefka et al.,
2021). Models that are robust to synthetic variations have been shown to be robust to natural
variations (Faryna et al., 2021).

2.3.2 NEGATIVE CONTROL TESTS

Cross domain differences in pathology images collected from different sources may confound the
discovery of explanatory variables and lead to poor generalization. This phenomenon, called ‘batch
effects’ (Goh et al., 2017), can lead to the model learning spurious features. Existing literature on
batch effects show that models can predict patient age, sex, race, time of slide preparation, site, and
scanner (Schmitt et al., 2021; Howard et al., 2020).

Although creating confounder-aware test sets can mitigate some of these issues, partial and hidden
confounders may go unnoticed and affect model performance. Another approach to tackle this issue
is to perform negative control tests which involve running experiments under conditions in which
the model is not expected to produce correct predictions (Lipsitch et al., 2010). We suggest the
following strategies for designing negative control experiments for ML in pathology:

• Train with regions of the image which have no discriminative information. For example, a model
trained to predict cancer using only background (non-tissue area) should perform poorly.

• Train without regions which are essential for predicting the label. For example, models for
predicting cancer should perform poorly when trained and deployed on patches sampled from
non-cancer regions.

Failure of a negative control test signals the presence of confounders and biases that create spurious
correlations. These tests are not designed to detect all types of confounders, but they help detect the
prominent ones and take appropriate actions.

3 CONCLUSION

Machine learning for pathology requires different evaluation standards due to differences in image
characteristics and clinical use-case. Existing datasets and evaluation metrics prevalent within
the ML community need to be rethought to fit pathology applications. We have observed that
there exist two distinct communities, one of ML researchers focused on the development of novel
methods and the other of computational pathology researchers focused on exploring and utilizing
the power of ML in healthcare, and model evaluation differs between them materially. We argue
that domain-specific knowledge from pathology concerning label reliability, test set enrichment,
and biological confounders should permeate into ML research. Conversely, advancements in ML
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such as synthetic data generation, robustness and sensitivity analysis, and out-of-domain testing
deserve wider adoption in computational pathology. In this paper, we propose a set of guidelines
for evaluating ML models in pathology which will help researchers create better datasets, metrics,
and evaluation setup. We believe this will improve patient outcomes through ML applications in
pathology and inform real-world motivated research.
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Antonelli, Tal Arbel, Spyridon Bakas, M Jorge Cardoso, Veronika Cheplygina, et al. Common
limitations of image processing metrics: A picture story. arXiv preprint arXiv:2104.05642, 2021.

Max Schmitt, Roman Christoph Maron, Achim Hekler, Albrecht Stenzinger, Axel Hauschild,
Michael Weichenthal, Markus Tiemann, Dieter Krahl, Heinz Kutzner, Jochen Sven Utikal, et al.
Hidden variables in deep learning digital pathology and their potential to cause batch effects:
prediction model study. Journal of medical Internet research, 23(2):e23436, 2021.

Birgid Schömig-Markiefka, Alexey Pryalukhin, Wolfgang Hulla, Andrey Bychkov, Junya Fukuoka,
Anant Madabhushi, Viktor Achter, Lech Nieroda, Reinhard Büttner, Alexander Quaas, et al.
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