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ABSTRACT

Standard evaluation techniques in Machine Learning (ML) and the corresponding
statistical inference typically do not typically explicitly consider ground truth
labels as a source of uncertainty. They are assumed to be reproducible. This is
not necessarily true. To demonstrate that, we investigate the reliability of nine test
sets used in Northcutt et al. (2021b). They contain items sampled from highly
cited benchmarks that are particularly challenging. Indeed, they are challenging
for human to label as well. By replicating Northcutt et al.’s experiments, we find
the ground truth labels, obtained via simple majority votes of five, to have zero
reliability in three of the experiments. They are statistically random. The cause of
irreproducibility is excessive rater disagreement, as evidenced in the zero inter-rater
reliability (IRR). Contrary to popular belief, majority voting fails to boost the signal
in these instances. To explore a solution, we conducted a smaller pilot using raters
with high qualifications and found a significant improvement in reliability across
the board. This shows high quality data collection is still paramount, and cannot
be supplanted by aggregation. We urge researchers, reviewers, and publishers
(such as for conferences and journals) to encourage the measurement and reporting
of reproducibility in the ground truth data used in ML evaluation. Towards this end,
we publish and release all the replications and associated data to aid assessment of
reproducibility of this work.

1 INTRODUCTION

Human labeled benchmarks are the primary empirical basis for comparing models and assessing the
progress on most ML tasks. Schaekermann et al. (2020) estimated over 60% of the papers in NeurIPS
2020 utilized human labeled ground truth data. In this paper, we investigate the reproducibility of the
ground truth generating process that is often used to produce these benchmarks.

The process of generating ground truth data consists of aggregating human annotations, typically
recruited from crowdsourcing platforms (Geva et al., 2019; Sabou et al., 2014). Its relatively low
costs and scalability led to the creation of many important datasets such as the ImageNet (Deng et al.,
2009) and FreeBase (Bollacker et al., 2008). Such advantages come at a cost: data quality. From the
onset, researchers have worried about the quality of this data, prompting early investigations into
understanding how labeling redundancy and aggregation can help mitigate quality concerns (Snow
et al., 2008; Sheng et al., 2008; Nowak and Rüger, 2010). These studies conclude that the aggregate
performance of a small number of non-expert annotations roughly match that of expert annotators.
Slowly this “replicate and aggregate” strategy of generating labeled data has become synonymous
with ground truth data collection. It is now the de facto data collection method in ML and is the
reference for model evaluation.

The recent rise of ML has seen a proliferation of increasingly more subjective tasks such as affective
computing (Cowen et al., 2021), hate speech detection (Leonardelli et al., 2021), and natural language
inference (Nie et al., 2020). In these tasks, subjective human judgements play an central role. At the
same time, the rapid pace of innovation in ML means that data are collected under lots of different
experimental conditions, e.g. with various degrees of rater quality control (Nowak and Rüger, 2010).
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Together, this means the random factors in the labeling process such as the sampling of raters and
their spontaneous decision-making can have an outsize impact on the data collection. With such
uncertainty in the labeling process, can we rely on aggregation to produce reliable ground truth labels
across a spectrum of tasks, by using just a handful of labels per item?

Ground truth reliability rarely enters our mind set. While reliability of the unaggregated data
can be readily computed from redundant labels, ground truth labels are not commonly replicated.
Unfortunately, comparisons of aggregation techniques only focus on accuracy and fail to consider
reliability as a comparison criterion. This lack of awareness is further evidenced in the fact that
many papers are concerned with ways to cope with imperfect data in training (Rolnick et al., 2017),
they often assume the test sets are pristine. In short, there is a gap in the literature on the reliability
quantification of ground truth labels. This is an important question as it affects our confidence in the
evaluation. These are the motivations of this paper. We study this problem using a sample of nine
verification datasets published in Northcutt et al. (2021b). We measure the reliability of ground truth
labels via replication and show they can be highly unreliable. In summary, the contributions of this
work are:

1. We replicated nine verification datasets to empirically measure the reliability of their ground
truth labels.

2. We show that inter-rater reliability is a strong driver behind ground truth reliability and that
aggregation’s affect is limited.

3. We show that high ground truth reliability is achievable through better data collection
practices, e.g. using raters with higher qualification.

2 RELATED WORK

In this section we summarize work addressing some of the sources of irreproducibility in ML research.

2.1 SOURCES OF UNCERTAINTY IN MODEL EVALUATION

The degree of certainty in model evaluation determines our ability to differentiate models based
on their genuine capabilities (Card et al., 2020). A typical model evaluation consists of a sample
of labeled items and predicted scores. The sampling of the items, the labeling process, and the
generation of scores are all potential sources of uncertainty. However, in the literature, many papers
focus on the items and the model, and fail to consider label reliability. In Accounting for Variance in
Machine Learning Benchmarks, Bouthillier et al. (2021) discuss variance in evaluation due to items
and model architecture, but omits the fact that labels are not perfectly reliable. Dror et al. (2018)
surveys a number of methods for statistical significance testing, but the methods only account for the
sampling of items and do not explicitly consider the reliability of labels. There are exceptions. In
Card et al. (2020), the authors study the statistical power of various Natural Language Processing
(NLP) benchmarks, and they use a random effects model to capture the variability of the labels.
In The Benchmark Lottery (Dehghani et al., 2021), the authors acknowledge the selection of rater
pool in evaluation may impact the model performance. Finally, Bowman and Dahl (2021) stress the
importance of reliable test data in benchmarking. They argue lack of data reliability will ”compromise
the validity of the benchmark.” Yet, this is far from standard practice; on the contrary, most widely
used ML benchmarks are of unknown reliability.

2.2 FACTORS OF GROUND TRUTH RELIABILITY

Ground truth labels are the result of aggregation over a number of raters.1 Naturally, as we seek to
understand the drivers behind ground truth reliability, we should consider 1) the aggregation method,
2) rating redundancy, and 3) rater disagreement. In our replication experiments, we focus exclusively
on 3) rater disagreement as a first demonstration. We do not alter the aggregation method or rating
redundancy used in the original study. We take these design parameters as fixed in order to isolate
and highlight the impact of rater disagreement on ground truth reliability. Nevertheless, we discuss
all 3 factors below.

1The number of workers can vary between items, but for simplicity we assume it is fixed.
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2.3 RATER DISAGREEMENT

Rater disagreement is a central concern in any human labeling experiment. Many factors affect
disagreement, such as qualifications of the raters, their personal and cultural background (Prabhakaran
et al., 2021), guideline insufficiency (Bowman and Dahl, 2021), and most importantly, the inherent
task ambiguity. In NLP, Nie et al. (2020), Leonardelli et al. (2021), and Pavlick and Kwiatkowski
(2019) found abundant disagreement even after elaborate rater quality control. This speaks to the
genuine inherent ambiguity of the task. In image recognition, 20% of images in ImageNet were found
by expert labelers to contain more than one prominent subject (Shankar et al., 2020). Researchers
are beginning to provide multi-class labels as a solution (Beyer et al., 2020; Rodriguez et al., 2021;
Shankar et al., 2020).

In scientific disciplines such as linguistics and psychometrics that routinely rely on human annotated
data, inter-rater reliability is used to quantify rater disagreement and to ensure the reproducibility
(Paritosh, 2012). Recommendations such as Landis and Koch (1977) are often used as publication
criteria.

2.4 AGGREGATION TECHNIQUES

Also known as truth inference (Zheng et al., 2017; Difallah and Checco, 2021), label aggregation is
used to counter labeling quality issues to recover the true labels. We focus on majority voting in this
paper (Sheng et al., 2008) to be consistent with the Northcutt et al. (2021b) paper. The mean (Snow
et al., 2008) is another popular option.

Many different aggregation techniques have been proposed: Difallah and Checco (2021) gives a
recent review of techniques for different task types (e.g. rating scales, image vs text). Other methods
have been proposed to make the best inference based on different experimental assumptions (e.g. error
prevalence, independence of error with respect to raters and items, rater weighting schemes, different
priors, and sparsity of data). A notable technique worth mentioning is Dawid and Skene (1979)’s
EM-style iterative algorithm that considers individual raters’ performance, using the weighted mean
in each M-step as a stand-in for ground truth. Also worth mentioning is its Bayesian variant Raykar
et al. (2009).

With such a proliferation of different techniques, choosing the appropriate one to use is an open-
ended question. Sheshadri and Lease (2013) compare seven popular methods and conclude none
of the aggregation method is consistently the best across experiments. Zheng et al. (2017) come
to a similar conclusion comparing 17 methods. Both papers note that majority voting provides a
reasonable, easy-to-implement baseline, but more sophisticated methods can potentially provide
additional benefits.

We note that these comparison studies only focus on accuracy of the aggregation methods, which is
often described circularly Riezler (2014), and fail to consider their reliability. Hence we do not know
how these methods differ in terms reliability in their final outputs.

2.5 RATING REDUNDANCY

Past large-scale demonstrations of Wisdom of Crowds tended to employ high rating redundancies.
Galton (1907)’s first demonstration involved 787 farmers at a county fair. Simoiu et al. (2019) uses
1000 ratings per question to test the validity of Wisdom of Crowds.

There is a reason for that. In the case of the mean, the reliability of mean labels strictly increases as a
function of the rating redundancy (Ebel, 1951). The functional form is given by the Spearman-Brown
formula (de Vet et al., 2017) and the formula is routinely used by behavioral scientists in experimental
design. Based on this, we have evidence that reliability of ground truth labels depends on the rating
redundancy, regardless of the aggregation methods.

Unfortunately, rating redundancy in crowdsourcing experiments is typically low. Card et al. (2020)
conducted a meta-analysis of EMNLP papers that utilize human evaluation for model comparison.
They find 57% of experiments collected three annotations per item. Such low rating redundancies
is the norm rather than the exception. Rating redundancy is an extra safeguard against labeling
uncertainty, but the current levels may not be sufficient.
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Figure 1: A screenshot of the ImageNet verification tasks. One label is taken from ImageNet, one is a
predicted label produced from confident learning (Northcutt et al., 2021a).

3 METHOD

We describe the nine original Northcutt et al. (2021b) datasets,2 how we replicated them, and our
methodology for measuring the datasets’ inter-rater reliability and ground truth reliability.

3.1 ORIGINAL VERIFICATION DATASETS

We build up on the work by Northcutt et al. (2021b), which investigated 10 highly cited ML
benchmarks test sets from a broad set of tasks. This work went above and beyond the state-of-the-art
in ground truth data generation, and publicly released all their data and methodology. They found
pervasive errors in these benchmarks: an estimated average of at least 3.3% errors across the 10
datasets, e.g., 6% of the ImageNet test set. In this section we summarize their approach to identifying
errors in the benchmarks.

They first used confident learning (Northcutt et al., 2021a) to identify test set items that have a highest
likelihood of having an incorrect label. In other words, this is not a random sample of the original
benchmarks, also likely the hardest to label subset for human raters as well. This makes this dataset
really valuable for reproducibility research. These items were then sent to Mechanical Turk (MTurk)
to be validated in a human evaluation experiment. Each item was shown to 5 MTurk raters along
with two different labels: one from the benchmarks and one predicted from confident learning. The
raters selected whether they saw the (1) benchmark label, (2) the predicted label, (3) both labels, or
(4) neither in the example. A screenshot of the task is shown in Figure 1. This is not a typical design
as it involves two labels (one machine generated candidate, and the other human generated from
the original benchmarks) instead of one. That is because the authors were trying to identify errors
in the benchmarks and simultaneously correct them using the predicted labels. The authors declare
the original benchmark label correct if three or more workers choose option (1). This amounts to
a simple majority of 5. We are interested in studying this verification process, hence we will only
concern ourselves with option (1), and treat other options as not (1). Specifically, after we collect
the data, we transform it into a binary verification task of confirming the benchmark labels. There
are additional details regarding the benchmarks that we will not reproduce here. We refer interested
readers to Northcutt et al. (2021b) for more details.

The authors released all their collected labels and invited readers to browse and contribute further
improvements. We use them as a starting point for this investigation. Not only do these datasets
present a spectrum of tasks, but the authors go above and beyond the state-of-the-art in building
ground truth data, e.g., Krishna et al. (2016), as well as in the methodological reproducibility of

2The original study had ten datasets, and we had some technical difficulties in replicating one of them, the
Audioset dataset from Gemmeke et al. (2017).

4



ML Evaluation Standards Workshop at ICLR 2022

making data and process publicly available. We are grateful for the generous data sharing by the
authors and follow and encourage others to adopt this open practice.

3.2 REPLICATIONS

We re-labeled nine of the ten aforementioned datasets using MTurk. To ensure we replicated the
experiments faithfully, we communicated with the authors to learn about additional details not reported
in their paper. We followed each step carefully, including rating templates, rater selection criteria, and
rater compensation. As in the original study we assigned five MTurk raters to each item. Our goal in
replication is to measure the reliability of the ground truth generation process, so we try to mimic
the original conditions to our best ability. All the datasets will be made available on GitHub (not yet
ready at the time of publication): https://github.com/google-research-datasets/
ground-truth-replications.

3.2.1 CHALLENGES IN REPLICATION

Some of the tasks in the original study presented raters with canonical examples of each label. The
specific examples used in the study were not published, so we experimented with a few heuristics
based on recommendations from the authors: a) choosing the highest predicted class probability for
that sample, b) choosing the samples that had the lowest class entropy, c) choosing the examples
from the original benchmarks as the canonical source. We noticed variation in results depending on
the heuristics for choosing examples to show. Thus, in this paper we decided to report the rater data
without examples, for the sake of consistency across all the datasets. We report on 18 replications
(nine regular, nine masters) without examples. We publish all the 30 replications we tried (previous
plus three ImageNet replications with examples, and nine masters without examples) in the associated
data release. Despite our best effort, there are unavoidable differences. For example, the worker pools
may have shifted in the year since.

3.3 RATERS WITH HIGHER QUALIFICATIONS

In addition to replicating the original datasets, we ran a small pilot to understand the impact of using
more qualified raters on data reliability. We elected “masters” raters on the MTurk platform, and
among them only chose those with 90% acceptance rate and a minimum experience of 100K HITs.
Unlike our replications in the last section, we assigned 10 MTurk workers to each item (five in each
of the two replications), in order to measure the reliability of the resulting ground truth labels (see
Section 3.5 below). This is merely a proof-of-concept, so we only collected masters labels on 100
items in each benchmark dataset that are randomly sampled.

3.4 INTER-RATER RELIABILITY

In a labeling experiment, the extent of rater agreement is quantified using inter-rater reliability (IRR).
Reliability is preferred over %-agreement because the latter is sensitive to class-imbalance and can
lead to overly optimistic results (Chicco and Jurman, 2020). IRR is the canonical measure of rater
disagreement in psychometrics (Brennan and Hays, 1992) and linguistics (Artstein and Poesio, 2008)
and is use as a primary safeguard against irreproducibility of human labeled data (Paritosh, 2012).

Many reliability coefficients exist to accommodate different experimental conditions and assumptions.
Common measures include Cohen’s (1960) kappa, and intraclass correlation (McGraw and Wong,
1996), and Krippendorff’s alpha (Krippendorff, 2011). Our coefficient of choice is Krippendorff’s
alpha as it can accommodate multi-rater, binary-rating experiments. Krippendorff’s alpha requires
the raters be interchangeable, which we feel is justified in the original experiments with a large
number of MTurk raters. We calculate Krippendorff’s alpha as

α “ 1 ´
1 ´ Observed Agreement
1 ´ Chance Agreement

,

where observed agreement is the proportion of times two raters agree, and chance agreement is
expected agreement by chance. Reliability ranges from 0 to 1. IRR “ 1 indicates perfect agreement
between raters. IRR “ 0 indicates there is no observable agreement between raters beyond chance
agreement. Different minimum acceptable reliability values have been suggested, e.g. Carletta (1996)
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Benchmark Label Original Ground Truth Replicated Ground Truth
Apple TRUE TRUE
Apple FALSE TRUE
Orange TRUE FALSE
Orange FALSE TRUE
Apple FALSE FALSE
Orange TRUE FALSE

Table 1: Schematics illustrating the evaluation of benchmark labels. The Benchmark column is
original labels to be verified by MTurk raters. Their collective judgements are aggregated into ground
truth labels via majority vote of five. Original and Replicated Ground Truth columns represent the
original Northcutt majority votes and our replicated results respectively. Reliability of ground truth
labels is computed as the Krippendorff’s α between them.

suggest IRR “ 0.67 for computation linguistics and Landis and Koch (1977) suggest IRR “ 0.6 for
medical sciences.

3.5 GROUND TRUTH RELIABILITY

To compute IRR, a minimum of two ratings per item is required. In Northcutt’s verification datasets,
each item is rated by five raters, hence IRR can be computed readily from the published data. For
ground truth reliability, however, additional data is required. This is because each verification dataset
only produces one vector of ground truth labels, hence we have to replicate the experiments in order
to obtain another instantiation. There is an exception. If the aggregation method is the mean, then
one can use the Spearman-Brown formula (de Vet et al., 2017) to analytically calculate the reliability
of mean ratings based on the IRR. For majority voting, the authors are not aware of any closed-form
solution and have to resort to empirical replication.

Similarly as before, we used Krippendorff’s alpha to calculate the reliability of ground truth labels.
To justify this choice, we checked the marginal distributions to ensure there are no significant
distributional shifts between the two sets of experiments. We illustrate the computation of α in Table
1. The first column is the benchmark labels being validated. After collecting the labels, we binarize
them into TRUE/FALSE based on whether they agree with the benchmark label as described in the
previous section. Original Ground Truth represents the 5-rater simple majority votes from Northcutt’s
experiments. Replicated Ground Truth represents their counterparts from our own replications.
Reliability of the ground truth labels is taken to be Krippendorff’s alpha between these two ground
truth columns.

4 RESULTS

We present results from our replication experiments in this section. We show that the IRRs in both
the original and replicated verification datasts are low. Some are effectively zero (random), leading to
equally low ground truth reliability. The vision tasks are found to have higher IRR and benefit more
from majority voting. We illustrate that IRR is a strong driver behind ground truth reliability. Lastly,
we show a proof-of-concept demonstration that using more qualified raters can lead to large gains in
reliability.

4.1 INTER-RATER RELIABILITY

The IRR values of the original and replicated verification datasets are shown in Table 2. The IRR
values are generally quite low. In particular, the three NLP tasks are not statistically significantly
different from zero. In other words, the data are effectively indistinguishable from a random shuffle.
Perhaps this is because the Amazon and IMDB tasks are sentiment analysis, so they are expected to
be more subjective. However, the excessive rater disagreement in these tasks suggests they may be
under-defined or the experiments were otherwise not well executed.

On the other hand, vision tasks are generally thought to be more objective. Yet, they are exhibiting
low IRR ranging from 0.178 to 0.474, which is still below the 0.6 cutoff recommended by Landis
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Benchmark Modality Size IRR (orig.) IRR (repl.) Delta
20news text 93 -0.005* -0.025* -0.020
Amazon text 1,000 0.033* 0.013* -0.020
IMDB text 1,310 0.144* 0.077* -0.067
CIFAR-10 image 275 0.178 0.164 -0.014
QuickDraw image 2,500 0.245 0.231 -0.014
CIFAR-100 image 2,235 0.290 0.244 -0.046
MNIST image 100 0.377 0.348 -0.029
Caltech-256 image 400 0.423 0.375 -0.048
ImageNet image 5,440 0.474 0.224 -0.250
*not statistically significant at 95% confidence

Table 2: IRR of the nine original verification datasets and their replicated counterparts. Delta =
replicated IRR - original IRR. The bolded values are not statistically significant. All the replicated
IRRs are smaller than the originals, despite our best effort. All the deltas are relatively small, with
the exception of the ImageNet.

and Koch (1977). The low reliability may be partially explained by the inherent ambiguity in the
images. For example, the CIFAR-10, QuickDraw, and CIFAR-100 have lowest IRR among vision
tasks. CIFAR images are tiny, and QuickDraw images are rough hand-drawn sketches. These types
of images can be prone to rater disagreement due to inherent ambiguity. This shows that the subset
identified by Northcutt et al. (2021b) are not only difficult for machines but also difficult for human
raters to consistently label. Far from a random sample of the original benchmarks, the reliability
results derived from this sample do not reflect the reliability of the original benchmarks. However,
as this represents challenging subsets of these benchmarks, any claims of machine performance on
this subset are hard to quantify due to the lack of labelling reproducibility. Simply put, this subset
identified by Northcutt et al. (2021b) is both challenging for machines to predict and for humans to
verify. How do we deal with this last mile in ML evaluation?

In the replications, the replicated IRR tracks the original values fairly well, as evidenced in the
relatively small deltas. However, there are two major concerns. First, all the replicated IRRs are
consistently smaller than the originals. Secondly, the IRR of the ImageNet replication is significantly
lower than the original. This means our replications were not done in an identical fashion as the
original experiments, despite our attempt to follow the exact instructions from the original authors.
We acknowledge the shortcomings in our replication process in

5 CHALLENGES IN REPLICATION

, but the results are corroborated with IRR. These problems speak to the challenges in running replica-
tion experiments in general, despite the original authors’ generous sharing of data and methodology.
We acknowledge this is a weakness in our study and will continue to investigate it.

5.1 GROUND TRUTH RELIABILITY

In the previous section, we looked at the reliability of the rater labels. In this section, we look at
the reliability of the ground truth data, i.e., the ground truth labels obtained by aggregating the five
votes using majority. The ground truth reliabilities in the nine verification datasets are shown in
Table 3. Observed agreement and chance agreement are also shown to help make the calculation of
reliability more transparent. Nie et al. (2020) use 1 - %-agreement between replications of ground
truth labels to measure their uncertainty and call it “change rate.” Despite the possibility of being
mis-interpreted, we include %-agreement for greater transparency. To ensure proper interpretation,
we include the chance agreement as a baseline. The chance agreement is calculated according to
Krippendorff (2011). It is implicitly used in the calculation of IRR, but we make it explicit here for
ground truth labels.

As foreshadowed, the three NLP tasks with low IRR turned out to have low, non-significant ground
truth reliability. This implies the “true label” of each item in these verification sets is only known up
to its marginal distribution, and is effectively indistinguishable from a random baseline. This is bad
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Benchmark Observed Agreement (%) Chance Agreement (%) Reliability (α)
20news 76.3 74.2 0.075*
Amazon 64.8 62.0 0.074*
IMDB 59.0 55.9 0.071*
CIFAR-10 82.5 71.7 0.384
QuickDraw 76.7 61.9 0.387
CIFAR-100 79.9 64.8 0.428
MNIST 86.0 70.4 0.526
Caltech-256 87.2 69.3 0.582
ImageNet 71.8 50.2 0.435
*not statistically significant at 95% confidence

Table 3: Reliability of ground truth labels in nine verification datasets. The bolded values are not
statistically significant. Observed agreement and chance agreement (baseline) are shown to help
make the calculation of reliability more transparent, as α is equal to 1 - (1 - observed agreement) / (1
- chance agreement). Note the chance agreement figures are high due to class imbalance.

news for the model builders. If they rely on the these labels to try to intuit their model’s strengths and
weaknesses, and to use this information to make improvements to the model, it will no different than
shots in the dark.

As promising as aggregation is, majority-voting in the NLP experiments fails to result in any material
improvement in reliability. In the vision tasks, it is more effective. The ground truth reliability in
vision is higher, ranging from 0.384 to 0.582, showing mild but consistent improvement from the
IRR. However, these values are still below the recommended 0.6 cutoff.

These results together show that rater reliability is a strong driving factor of ground truth reliability.
While aggregation generally can help, it simply cannot replace high quality data collection. Par-
ticularly, in experiments with excessive rater disagreement, aggregation may have a very limited
effect.

5.2 USING RATERS WITH HIGHER QUALIFICATIONS

Many factors may have contributed to the low reliability in these experiments, and some of them
may be unique to the specific experiments. For example, sentiment analysis and tiny images are
likely more subjective than other experiments. While it may be possible to prescribe solutions to each
individual experiment, rater quality control is generally helpful in improving reliability.

We illustrate the impact of rater quality control on reliability by re-running the same experiments using
more qualified raters. Table 4 shows the new IRR and ground truth reliability resulting from using
more qualified raters. There is an increase in reliability in both categories across all nine experiments.
In particular, there are large jumps in the IRR of IMDB (+ 0.351), Amazon (+ 0.273), and Caltech-256
(+ 0.239). These also translate into large jumps in ground truth reliability correspondingly: IMDB (+
0.308), Amazon (+ 0.570), and Caltech-256 (+ 0.174). In addition, there are large improvements in
the ground truth reliability of 20news (+ 0.231), CIFAR-100 (+ 0.349), and QuickDraw (+ 0.280).
Together, four of the nine experiments achieve ground truth reliability that is above the 0.6 cutoff.

We certainly do not think this is the only way to improve data reliability, nor have we tried to
tailor specific improvements to each experiment. This simple exercise merely serves to illustrate that
reliable ground truth is achievable, and that the key is high quality data collection, not just aggregation.
We believe well-designed experiments executed by qualified raters are the key to reproducible ground
truth data.

6 DISCUSSION

We show that ground truth labels in nine experiments generated from a typical ground-truth-generating
process can be highly unreliable. Using these as test labels in evaluation will render our evaluation
less reproducible. We show that inter-rater reliability has a strong influence on ground truth reliability,
and consequently using raters with higher qualifications helps. Given this, metrics that are agnostic
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Inter-Rater Reliability Ground Truth Reliability

Benchmark Old New Delta Old New Delta
20news -0.005 0.140 + 0.145 0.075 0.306 + 0.231
Amazon 0.033 0.305 + 0.273 0.074 0.644 + 0.570
IMDB 0.144 0.495 + 0.351 0.071 0.379 + 0.308
CIFAR-10 0.178 0.303 + 0.125 0.384 0.457 + 0.073
QuickDraw 0.245 0.411 + 0.166 0.387 0.668 + 0.280
CIFAR-100 0.290 0.324 + 0.080 0.428 0.777 + 0.349
MNIST 0.377 0.466 + 0.089 0.526 0.578 + 0.052
Caltech-256 0.423 0.662 + 0.239 0.582 0.756 + 0.174
ImageNet 0.474 0.488 + 0.014 0.435 0.444 + 0.010

Table 4: New inter-rater reliability and ground truth reliability based on raters with higher qualifica-
tions are shown next to the old values. In each category, delta = new - old. All deltas are positive,
meaning there is an increase in reliability in both categories across all experiments. Delta values
larger than 0.1 are bolded.

to ground truth reliability may be fundamentally unfit for characterizing the quality of the data. Some
of the questions that we hope that this study provokes discussion on are:

1. How do we encourage (require!) reporting the reliability of the human labeled data in the
publication process?

2. How do we incentivize investment in improving reliability of widely used benchmarks, since
so much rests on them?

3. How do we live with the lack of reproducibility in the ground truth? How do we do rigorous
evaluation in the face of uncertainty in the ground truth data?
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