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Abstract

New machine learning methods often fail to perform as expected on datasets
similar to benchmarks reported on in their respective papers. These per-
formance gaps pose a challenge for evaluation: both researchers and practi-
tioners expect (or hope) that machine learning models which perform well
on a dataset designed for a task perform well on other datasets matched to
that task. We argue that external validity, the relationships between tasks
and the learning problems which instantiate them, is understudied. We
highlight the ways in which algorithm developers and benchmark creators
fail to address this concern of external validity, suggest some remedies, and
identify open questions in external validity which would help the community
better build benchmarks and understand model performance.

1 Introduction

Evaluating machine learning models on benchmarks provides limited utility unless per-
formance on the benchmark is informative about performance on a task. For example,
researchers may not be interested in performance on ImageNet (Russakovsky et al., 2015) as
such, but rather in image classification as a broadly-applicable task. Recent work reveals a
string of examples where the bridge between benchmarks and tasks crumbles, from models
exploiting inadvertent spurious heuristics in data (Oakden-Rayner et al., 2020; DeGrave
et al., 2021; Goyal et al., 2017; McCoy et al., 2019; Kaushik et al., 2019), to examples where
chosen metrics actually disagree with human judgment (Zhang & Toral, 2019; Edunov et al.,
2019; Kryściński et al., 2019; Fabbri et al., 2020; Callison-Burch et al., 2006).

The notion of validity has a rich history in other fields; here, we use the concepts as
adapted in (Liao et al., 2021). More specifically, external validity is the generalizability of
methods and findings from one learning problem to another. Learning problems are the
combination of a dataset and evaluation metric, e.g., ImageNet with top-1 accuracy forms a
learning problem. Learning problems instantiate one or more tasks, or abstract problems,
defined in either natural language or in a formal manner; e.g. image classification is a task.
Evaluation questions regarding multiple benchmarks, such as extrapolating performance
from one benchmark to another, are inherently different from internal validity concerns
involving only a single benchmark, like characterizing model performance across random
seeds, or comparing against competitive baselines. We illustrate an example task hierarchy
and associated learning problems in Figure 1.

While the community has increased attention to the internal validity of research findings,
e.g. pushing for reporting statistical uncertainty, external validity claims made by papers
are often under-scrutinized, and the topic of external validity itself is understudied. We (i)
provide some representative examples of external validity failures identified by recent papers;
(ii) suggest methodological changes for paper authors to improve the rigor of external validity
claims; (iii) highlight what we think are interesting and unanswered questions in the study
of external validity.
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Figure 1: External validity is the generalizability of methods and findings from one learning
problem to another. Learning problems combine a dataset and a metric to instantiate one
or more tasks. While learning problems are concrete artefacts, tasks are abstract problems
related to each other hierarchically. External validity failures like spurious correlations
reveal the limitations of evaluating on a single learning problem. Datasets – MLQA (Lewis
et al., 2019); DRCD (Shao et al., 2018); SQuAD v2.0 (Rajpurkar et al., 2018); SQuAD v1.1
(Rajpurkar et al., 2016); SNLI (Bowman et al., 2015); MNLI (Williams et al., 2017).

2 Motivating external validity

Recent works provide a long list of evaluation failures in machine learning papers.

Question answering models trained on the SQuAD dataset (Rajpurkar et al., 2016), sampled
from Wikipedia, perform poorly when evaluated on data from other source domains, like
Reddit posts and New York Times articles (Miller et al., 2020). Similarly, text summarization
models originally trained on XSum (Narayan et al., 2018) or MLSum (Scialom et al., 2020)
perform poorly when tested on newer data involving COVID-19 (Mille et al., 2021). One
interpretation is that the original benchmarks overstate model performance - another is
that the original benchmarks do not hold very strong external validity for other learning
problems.

Reading comprehension models trained on certain bAbI (Weston et al., 2015) or CBT tasks
(Hill et al., 2015) can predict the correct answer surprisingly well with only the text excerpt
and ignoring the question - sometimes better than models trained with both (Kaushik &
Lipton, 2018). Likewise, on the MNLI natural language inference dataset (Williams et al.,
2017), heuristics comparing whether words in the hypothesis exist in the premise can achieve
surprisingly strong performance (McCoy et al., 2019). In other words, supposedly critical
components of these evaluation benchmarks can be ignored and still achieve good or even
superior performance compared to state of the art models.

Both BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004), widely-used metrics for
machine translation and automatic summarization, fail to correlate strongly with expert
judgments of quality (Kryściński et al., 2019; Fabbri et al., 2020; Callison-Burch et al., 2006).
Indeed, BLEU has contradicted human rankings in the past (Edunov et al., 2019; Zhang &
Toral, 2019). The consequence is that improving ROUGE or BLEU scores on benchmarks
may actually lead to reduced performance as determined by humans.

These cases demonstrate that even if models are rigorously evaluated on a single learning
problem, performance cannot be readily extrapolated to the context of another learning
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problem. If benchmarks are spotlights for model performance, these examples suggest that
they illuminate a much narrower field of view than expected, and are often cast askew.

3 Suggestions for algorithm and benchmark creators

We provide some simple, nonexhaustive suggestions for researchers to address external
validity concerns arising during benchmark creation and model evaluation.

Guidelines for benchmarks. Benchmark creators and the community writ large are
responsible for rigour in data curation, annotation, and metric selection.

a.Check for spurious correlations. Benchmark creators should apply domain-specific
knowledge to check for spurious correlations in their datasets (e.g., for text datasets,
syntactic heuristics or negation operators (Niven & Kao, 2019; McCoy et al., 2019)).

b.Compare against existing benchmarks. Researchers should compare performance of state-
of-the-art (SOTA) methods on their benchmark and existing benchmarks if possible.
As an anti-example, three of four major scene text detection datasets failed to meet this
bar: MSRA-TD500 (2012) (Yao et al., 2012) compared up to seven SOTA methods on
two additional datasets, but COCO-Text (2016) (Veit et al., 2016), Total Text (2017)
(Ch’ng & Chan, 2017) and SCUT-CTW1500 (2017) (Liu et al., 2017) only tested on
their own datasets.

c.Baseline simple methods. In addition to baselining SOTA methods, benchmark creators
should ensure that the learning problem is not unintentionally easy by baselining random,
linear, or classical methods where applicable and checking assumptions about the task
(e.g. verify that it is not possible to achieve a higher performance by ignoring parts of
the input or dataset).

Guidelines for model evaluation. As much as possible, algorithm developers should strive
to evaluate on multiple learning problems, i.e., multiple datasets and metrics. Ideally, the
learning problems cover a diverse range of possible instantiations of the targeted task. (We
comment further on data diversity in Section 4). Algorithm developers should be careful to
scope claims about model performance based on the supplied evidence, avoiding over-general
claims with lack of support. As authors have a clear self-interest in making strong statements
about their contributions, incentive alignment must be provided by reviewers.

We invite further discussion on improving external validity. As more methodological checks
are introduced (NeurIPS 2021 Paper Checklist, ICML 2020 Reproducibility Checklist, inter
alia) managing the process burden on authors becomes a greater challenge.

4 Open questions in external validity

Providing recommendations on how to alleviate external validity failures is limited without
further research into external validity. We outline two framing questions for external validity,
algorithm transfer and learning problem transfer, then describe specific open problems. In
general, the open questions surround either the relationships between different learning
problems and tasks (I, II, III, IV, VIII) or about properties of the data and how they
affect model performance (V, VI, VII).

Algorithm transfer poses a familiar question: is the relative performance of a model stable
from one learning problem to another? A new method which exploits spurious correlations in
a dataset will exhibit weak algorithm transfer, whereas methods like residual connections (He
et al., 2016) consistently improve performance across many learning problems. In contrast
to algorithm transfer, learning problem transfer is about the trajectory of progress of all
models evaluated on a learning problem A versus the full performance history of those same
models adapted to another learning problem B. Consider ImageNet (Russakovsky et al.,
2015) - as models improved over time on that benchmark, they also improved over time on
other learning problems (Kornblith et al., 2019; Recht et al., 2019).
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I. Comparing learning problem transfer. Comparing model performance over time
between learning problems would allow us to identify patterns which dictate when learning
problem transfer occurs, helping researchers to build better benchmarks. Researchers
converge to a smaller standard set of benchmarks over time, leading to a partial picture of
model performance across all the learning problems introduced. How do extant learning
problems transfer between each other? For example, (Kornblith et al., 2019) explicitly
compare performance improvements on ImageNet to sixteen other image classification
datasets. Comparing learning problem transfer between problems allows us to answer
counterfactuals such as: “could model development have progressed faster with a different set
of standard evaluation benchmarks ((Liu et al., 2021))?” and “is learning problem transfer
from benchmark X to other benchmarks plateauing (i.e., the correlation of improvement on
benchmark X with improvement on other benchmarks is decreasing over time)?”

II. Formalising similarity between datasets. Researchers often hold intuition about
how well an algorithm will transfer between learning problems based on a vague notion of
how similar or different two datasets are. Formalising how datasets are similar or different is
worth further investigation. Statistical measures of distribution differences (Deng & Zheng,
2021; Borgwardt et al., 2006; Ben-David et al., 2006; Ganin et al., 2016; Glorot et al., 2011)
are not the same as knowing that sim-to-real transfer is usually harder than switching
geographic locales, or that news articles are more similar to social media posts than medical
journals. A promising direction is to use trained models to describe differences in distributions
(e.g. language models for text (Zhong et al., 2022). Such measures could be applied to
systematically identify large, unlabelled datasets (inexpensive) to use for pre-training prior
to labelled datasets (expensive). Another application is improving synthetic data generation
as a substitute for data annotation.

III. Characterising relationships between learning problems and tasks. Learning
problems exist independently of tasks. Researchers actively interpret performance on a
learning problem as performance on relevant tasks: for example, results on SQuAD (Rajpurkar
et al., 2016), a question-answering dataset, can be interpreted as measuring model capability
in natural language understanding (as opposed to e.g. 3D point cloud classification), in
reading comprehension (as opposed to machine translation), in English question-answering
(as opposed to Mandarin question-answering), or Wikipedia span selection question-answering
(as opposed to freeform Quora question-answering). From an evaluation perspective, there
are usually at least one or two steps in the task hierarchy tree between a learning problem to
a task of broader interest (e.g. SQuAD most directly measures English question-answering,
which is derivative of language understanding). What makes one learning problem a better
instantiation of a particular task than another learning problem?

IV. Formalising similarity between tasks. Architectures are increasingly shared between
different tasks. The Transformer architecture (Vaswani et al., 2017) was initially benchmarked
on machine translation, but has now been applied to speech recognition (Dong et al., 2018),
image classification (Dosovitskiy et al., 2020), and even reinforcement learning (Chen et al.,
2021). In other words, there is surprisingly strong learning problem transfer between machine
translation and reinforcement learning, which seems to arise from some kind of underlying
similarity between the two tasks; both can be posed as derivative subtasks of general sequence-
to-sequence modelling. What are other such relationships between tasks? Is everything
sequence-to-sequence modelling (i.e., we should build the best possible sequence-to-sequence
model, then adapt it to derivative tasks)?

V. Comparing human- and computation-centric data difficulty metrics. Researchers
have proposed two complementary strategies to quantify the difficulty of individual examples
or classes of examples. One approach leverages information from human annotators to
produce statistics like Krippendorff’s α (Krippendorff, 1970), average human accuracy (Recht
et al., 2019), human-model disagreement (Yang et al., 2019), or psychometric quantities
such as from item response theory (Baker & Kim, 2004; Vania et al., 2021; Lalor et al.,
2016). A second approach uses only information from model training or inference, such as
the prediction depth (Baldock et al., 2021), consistency score (Jiang et al., 2020), model
confidence and variability across training runs (Swayamdipta et al., 2020), and forgettability
(Toneva et al., 2018). How do these two families of metrics relate to each other? Should we
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treat harder versions of the same task as different tasks altogether? How do we determine
the optimal difficulty for an evaluation dataset?

Further data scaling laws. Scaling laws (Kaplan et al., 2020) relate model performance
with compute, dataset size, and parameter count. We suggest searching for similar phenomena
with the qualities of data diversity and data quality.

VI. Data corpus diversity. Models are increasingly pre-trained on massive datasets
blended from distinct corpora. For example, BERT, a language model (Devlin et al.,
2019), was pre-trained on BooksCorpus (800M words) (Zhu et al., 2015) and English
Wikipedia (2.5B words). What is the relationship between model performance and data
diversity (and overall dataset size)? Is it possible to maintain model performance while
decreasing total training dataset size by increasing the number of distinct data sources?
This topic is closely related to formalising dataset similarity, above.
VII. Data quality. In an example of just how bespoke the treatment of data quality
can be, GPT-3 (Brown et al., 2020), another language model, was pre-trained on five
different datasets with sampling frequency hand-tuned based on subjective quality
judgments (60% filtered Common Crawl (Raffel et al., 2019), 22% WebText2 (Radford
et al., 2019), 8% Books1, 8% Books2, 3% Wikipedia). Similarly, pre-training datasets
are frequently filtered or preprocessed to remove low quality data in an ad-hoc manner
(Ng et al., 2019), which has been shown to improve training time and model outputs
(Lee et al., 2021). Researchers have reported redundant examples or duplicates between
the test and training set in datasets such as Common Crawl (Brown et al., 2020; Raffel
et al., 2019) and CIFAR-100 (Barz & Denzler, 2020). What are more sophisticated
quantifications of data quality, beyond the number of duplicate examples? What is
the relationship between model performance and data quality? Does it ever become
pointless to add extremely low quality data?

VIII. External validity and pretraining. Pretraining and finetuning add another wrinkle
to each of the questions above. For example, how does the external validity of a pretraining
dataset interact with the external validity of the finetuning dataset? How does diversity in
the pretraining tasks affect algorithm transfer? When comparing algorithm transfer from
one downstream learning problem to another, how do we account for shared pretraining
datasets? It remains unclear how to choose the optimal pretraining task or learning problem
for a given downstream task.

5 Conclusion
We argue for the importance of external validity to machine learning evaluation. Even
if individual benchmarks are well-designed, absent external validity, conclusions are not
guaranteed to apply to other learning problems or the broader tasks that the community are
ultimately interested in. As external validity is still not well understood, we hope that the
open problems in this paper will drive further progress in machine learning.
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