
ML Evaluation Standards Workshop at ICLR 2022

INCENTIVIZING EMPIRICAL SCIENCE IN MACHINE
LEARNING: PROBLEMS AND PROPOSALS

Preetum Nakkiran & Mikhail Belkin
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ABSTRACT

We introduce a proposal to help address a structural problem in ML publishing:
the lack of community support and perceived lack of legitimacy for experimental
scientific work that neither proves a mathematical theorem, nor improves a practi-
cal application. Such experimental work is the bedrock of many fields of science,
yet is not well appreciated by top ML publication venues (e.g. NeurIPS, ICML,
ICLR). The problem is twofold: reviewers are often unaware of the value of such
work, and thus authors are disincentivized from producing and submitting such
work. The result is a suffocation of a scientific methodology that has a long his-
tory of success in the natural sciences, and has recently been fruitful in machine
learning.

To address this, we propose introducing a Best Paper Award specifically for
foundational experimental work in machine learning. The award targets scientific
work that is missed by existing communities: we exclude primarily theoretical
work and application-motivated work, both of which are well supported by exist-
ing venues (e.g. COLT, CVPR). We propose that ML venues include a subject-area
for “scientific aspects of machine learning”, and consider papers in this subject for
the award. More ambitiously, it can be implemented as an endowed yearly award
considering all papers in the prior year. We expect that establishing an award will
help legitimize this research area, establish standards for such scientific work, and
encourage authors to conduct this work with the support of the community.

In this proposal, we first discuss the structural problems in ML publication
which we hope to address. We then present a call-for-papers for the “science
of ML” subject area, describing the type of work we want to encourage. We
argue that it is not only a scientifically legitimate type of work, but perhaps even a
necessary type of work. Finally, we discuss broad guidelines for how such papers
may be evaluated by reviewers.

1 INTRODUCTION

The field of Machine Learning— as well as computer science more generally— is an umbrella field
harboring many different subfields, each with different goals. Among subfields of ML, an important
distinction is whether the subfield is primarly technological (i.e. with the goal of building and im-
proving learning systems), or scientific (i.e. with the goal of understanding the nature of learning).
There is well-understood value in interactions between these two types of work— however, their mo-
tivations, methodology, and evaluation procedures are fundamentally different1. Nevertheless, many
top ML conferences (e.g. NeurIPS, ICML, ICLR) do not cleanly distinguish between scientific and
technological tracks: they have neither designated subject areas, nor specific reviewer guidelines
for purely scientific work. The result is that the standards for technological work— which are the
dominant output of the ML community— often become de-facto standards for scientific work. For
example, reviewers are known to often judge scientific work in terms of its performance improve-

1See Eden (2007), Wegner (1976) and Goldreich & Wigderson (1996) for discussion of differences between
scientific and technological goals in CS.
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ment in practice.2 Moreover, top venues do not explicitly encourage purely scientific work in their
call-for-papers, or in their stated subject-areas. This creates at least two scales of problems: in the
short term, authors are discouraged from producing purely scientific work, since it is unclear if their
work will be respected at top venues. In the long term, this prevents a strong scientific community
from flourishing within the field of ML, since mainstream ML venues do not provide a welcoming
home for scientific activity.

There is one notable exception, where scientific work is properly supported within ML: the sub-
field of fully rigorous mathematical theory. This particular type of science is well-respected at top
conferences, and is judged on its own terms (largely independent of technological considerations).
Conferences have explicit “Theory” subject areas3, and purely theoretical papers have won best-
paper awards in top venues frequently in the past. However, the fully rigorous mathematical theory
is one of many modes of scientific inquiry— and should not be mistaken for the only valid mode of
inquiry. This mistake is unfortunately both frequently made and not at all new. Hoare in 1989, for
example, dismissed experimental methods in CS as wholly unscientific:

I find digital computers of the present day to be very complicated and rather poorly
defined. As a result, it is usually impractical to reason logically about their behav-
ior. Sometimes, the only way of finding out what they will do is by experiment. Such
experiments are certainly not mathematics. Unfortunately, they are not even science,
because it is impossible to generalize from their results or to publish them for the benefit
of other scientists. (Hoare, 1989)

These sentiments, which are still prevalent in the ML community, results in a lack of support for
other types of scientific work which are valid, important, and even necessary for future progress.
We aim to help address this by focusing on the following structural problem in the ML publication
system:

Problem 1: In mainstream ML venues, there is a perceived lack of legitimacy and real
lack of community for good experimental science— which neither proves a theorem, nor
improves an application. This effectively suppresses a mode of scientific inquiry which
has historically been critical to scientific progress, and which has shown promise in
both ML and in CS more generally.

Below, we first give evidence that Problem 1 exists (Section 2). Then we argue that Problem 1
is important— that experimental methods are both valid and essential to scientific progress in ML
(Section 3). These arguments are not new: we will survey arguments for experimental computer
science as early as Turing, and place some of them in a modern ML context. Finally, we will
outline our proposal to address Problem 1: a dedicated subject-area for “science of ML”, and an
accompanying best-paper award for this subject area (Section 4).

2 THE FAILURE OF SCIENTIFIC INCENTIVES

Here we list evidence that Problem 1 exists– that experimental scientific work is not well supported
in mainstream ML venues. This is “folklore” in the community, but we briefly list concrete argu-
ments below.

1. There was no designated subject area for scientific work that does not involve theorems in
the most recent NeurIPS, ICML, or ICLR. Thus, such works get scattered among different
reviewer pools, with unclear evaluation standards.

2. Scientific aspects of ML (towards understanding existing systems, not building new ones) did
not appear in the call-for-papers in the most recent NeurIPS, ICML, or ICLR.

3. There are no reviewer guidelines at mainstream generic ML conferences for evaluating purely
scientific work. In contrast, it is well-known that reviewers often ask for application improve-

2The ACL reviewing guidelines explicitly warns against this failure mode: “SOTA results are neither nec-
essary nor sufficient for a scientific contribution” (Rogers & Augenstein, 2021; Rogers, 2020).

3These subject areas usually refer to mathematically rigorous theory, although this is not the only kind of
scientific theory.
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ments, and “improving SOTA” is often essentially necessary for acceptance (Sculley et al.,
2018).

4. It is well-known that reviewers ask for “theoretical justification” for purely experimental pa-
pers, even when the experiments alone constitute a valid scientific contribution4.

5. There are many workshops organized around scientific investigation of machine learning5

which reveals the lack of support for such work in existing conference venues.

3 THE CASE FOR EXPERIMENTAL SCIENCE IN ML

The importance of experiments in scientific inquiry is not new: experimental science has a long
history in both the natural sciences, and in computer science. Interestingly, the AI research com-
munity in the 1950-70s was one of the first to push for empirical scientific methods in CS, beyond
the purely mathematical methods that had dominated previously6. This was famously presented by
Allen Newell and Herbert Simon in their 1975 Turing Award lecture “Computer Science as Empiri-
cal Inquiry: Symbols and Search”:

“Computer science is the study of the phenomena surrounding computers [...] Each
new program that is built is an experiment. It poses a question to nature, and its behav-
ior offers clues to an answer.” (Newell & Simon, 1976)

To Newell and Simon, computer science is the study of computers, in the same way that botany is
the study of plants, or optics the study of light7. Thus, they argue that phenomena in computing can
be treated as aspects of nature, and studied using the same methodology as the natural sciences—
incorporating both theory and experiment as appropriate. Moreover, the core tenet of Newell &
Simon (1976) and Simon (1995) is just as relevant today: in AI and ML, empirical methods are not
only appropriate, but essential to scientific progress.

To see why, observe that there are at least two obstacles faced by fully rigorous mathematical theory,
which are bypassed by experimental methods. First, the curse of complexity: computational systems
can exhibit dynamics that are beyond the reach of current formal analytical tools.

“In computer science in general, and in AI in particular, we are usually operating in
areas of greater complexity than those in which theorems can be proved. [...] Often the
most efficient way to predict and understand the behavior of a novel complex system is
to construct the system and observe it.” (Simon, 1995).

This intractable complexity is appreciated in many areas of science, including physics8. It is par-
ticularly evident in machine learning today, where we are far from having rigorous mathematical
theories which characterize the behavior of real deep learning systems. However, we can still make
progress with experimental methods, where we hope to empirically characterize behaviors rather
than prove them.

The second obstacle is the “definitional barrier” to theory in ML (Nakkiran, 2021, Section 1.3.2). We
cannot even formally state many relevant behaviors of ML methods, because we cannot precisely
define the objects involved. For example, we would like to describe the behavior of a learning
algorithm when trained and tested on data distributions from the real world (e.g. natural images or
language). However, we do not have a precise enough understanding of these “natural distributions”
to state formal theorems involving them. But this should not prevent us from studying ML: we can
perform experiments on a variety of distributions we heuristically consider “natural”, in the belief
that they share a common structure we are yet to formally identify. As noted by Newell & Simon

4For example, see Tom Goldstein’s recently NSF Town Hall on “how the ML community became anti-
science”: https://twitter.com/tomgoldsteincs/status/1484609273162309634.

5For example, “Identifying and Understanding Deep Learning Phenomena” at ICML 2019 https://
deep-phenomena.org/.

6See Eden (2007) and Polak (2016) for more historical context and discussion.
7This phrasing based on Knuth (1974).
8The theoretical physicist and Nobel laureate Philip W. Anderson warned against the reductionist viewpoint:

“The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws
and reconstruct the universe” (Anderson, 1972).
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(1976), many other areas of science lack formal definitions, but make significant progress through
qualitative and informal theories— from cell biology to plate tectonics.

If computer science was once primarily, as Knuth said, “the study of algorithms” (Knuth, 1974),
then machine learning is the study of learning algorithms and the data they learn from. We can use
analytical tools to describe the algorithms, but primarily empirical tools to probe their data.

4 OUR PROPOSAL

We propose that ML conferences introduce a subject area specifically for “Experimental Science of
Machine Learning,” and explicitly include this in their call-for-papers. Moreover, we propose a best-
paper-award for submissions in this area. To facilitate this, we present a candidate call-for-papers
for this subject area, and discuss goals and evaluation of experimental science.

4.1 CALL FOR PAPERS: EXPERIMENTAL SCIENCE OF MACHINE LEARNING

We invite submissions which conduct experimental investigation into the nature of learning and
learning systems. We welcome scientific work which involves either purely experimental character-
ization, or a synthesis of experiment and mathematical theory. We do not attempt to enumerate the
full scope of what may be considered “scientific work”— which is expansive and ever-growing. But
as guiding principles: (1) the primary motivation is to understand, rather than to improve, and (2) the
results identify structure in Nature— they teach us something about what was previously unknown
or uncertain. For ML in particular, “Nature” means computational learning systems— those used in
the past, present, future, and even those never to be used but instructive to conceive. And “structure”
can take many different forms, from precise quantitative conjectures to general qualitative princi-
ples. We expect that, as an experimental call, most submissions will contain at least one experiment
that teaches something new to a reasonable fraction of the community9. We elaborate on potential
types of papers, and give guidance to authors in the following sections.

To limit scope, and develop a focused community, we exclude the following types of work which
are already served by existing venues:

1. Primarily theoretical work on learning, of the type that would be welcomed at COLT, ALT, or
the Theory subject-area in general ML conferences (NeurIPS, ICML, ICLR).

2. Primarily technological (or application-motivated) work in learning, of the type that would be
welcomed at domain-specific venues (e.g. CVPR), or existing areas of general ML confer-
ences.

4.2 TYPES OF PAPERS

We describe several prototypical types of scientific papers in this subject area. This is far from a
comprehensive list10

Surprising Experiments. This type of paper performs a new and “surprising” experiment. A
well-designed experiment alone is worthy to be published, with or without a candidate explanation.

We now attempt to define “surprising” in the ML context. This is subtle: Kuhn (1962) defines sur-
prise as when an experiment is not accounted for by (or is inconsistent with) the dominant scientific
paradigm. This does not apply to many areas of machine learning, such as deep learning, because
there is no dominant scientific paradigm. That is, there is not yet a common conceptual framework
and methodology used by researchers for analyzing deep learning systems: different communities
apply different paradigms (from statistics, computational learning theory, physics, cognitive science,
etc.), and derive results which can be inconsistent with each other (and even with themselves). The
field is in a Kuhnian crisis of sorts, exploring many possible frameworks in search of one that will be

9A new experiment is not required, however. For example, we welcome work which unifies existing exper-
imental behaviors under a general empirical conjecture.

10Attempting to strictly define types of “good scientific work” encounters similar issues as attempting to
define “good mathematics”— issues discussed by Terence Tao in Tao (2007). We thus only present frequent
themes and prototypical examples.
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appropriate for modern ML. This makes defining “surprise” especially subtle— surprising to whom?
We propose the following informal sociological definition of surprise: an experiment is surprising if
a reasonable fraction11 of experts in the ML community incorrectly predict the experiment’s result.
That is, surprise is implied by community disagreement.

Finally, this is not the only reasonable definition of surprise: an experiment can also be deemed
surprising if it disagrees with the predictions or intuitions of a certain specific research paradigm—
for example, as experiments on overparameterized models disagreed with the intuitions from the
bias-variance tradeoff in statistics.

Empirical Conjectures. This type of paper unifies a set of experiments via a general conjecture—
describing (as precisely as appropriate) the observed behavior, and the range of settings for which
it holds. It is the analogue of conjecturing Kepler’s laws12 after the experimental observations of
Tycho Brahe. In machine learning, this type of paper can lift a behavior observed in one particular
experimental setting (a particular architecture and dataset, for example), into a more general claim
attempting to characterize learning systems which exhibit this behavior. Experimental conjectures
need not be fully precise, general, or even completely correct to be scientifically insightful— refining
conjectures along these axes is the normal process of science.

Refining Existing Phenomena. This type of paper builds on a prior experimental observation or
conjecture, and extends it in at least one way. This can take many forms, including

1. Generalizing scope: Demonstrating that the phenomenon holds in more general settings than
was previously known. Either by conducting further experiments, proposing a more general
conjecture, or both.

2. Isolating causes: Simplifying the experimental setting, to better understand which factors are
important for a certain behavior. This includes ablating factors of a complex system with
surprising behaviors (for example, CLIP Radford et al. (2021)) to determine which factors
are necessary and sufficient for the surprise (e.g. data diversity, sample size, architecture,
loss function, etc). It also includes studying simpler or vastly different learning systems (e.g.
random forests vs. neural networks) to understand which learning systems do or do not exhibit
a certain behavior.

3. Increasing precision: Addressing limitations in existing conjectures, by making them more
precise in either their predictions or their assumptions.

4. Refuting or refining conjectures: Presenting experimental counterexamples to prior conjec-
tures, thus helping refine them to be more correct. For example, the Michelson–Morley ex-
periment refuting the “luminiferous aether” theory of light (Michelson & Morley, 1887).

Formalizing Intuition. This type of paper takes a “folklore” intuition and attempts to formalize it
as precisely as possible, and test it empirically. This may involve proposing new definitions to cap-
ture notions which were hitherto vaguely defined. In machine learning, for example, one may start
with the folklore that “deep neural networks learn good representations when trained on real data”,
and attempt to formalize this by proposing concrete definitions of each object: representations, real
data, and deep neural networks. This type of paper will be “unsurprising” to most, since it is based
on existing folklore. However, the process of formalizing and testing intuition is itself scientifically
valuable: it allows us to better understand the scope and limitations of our knowledge, and to to
better identify flaws in our intuition (which are often revealed in the process of formalization).

New Measurements. This type of paper presents a new measurement tool (analogous to the
microscope, or the telescope), and argues that this tool can enable new kinds of scientific discovery.
A prototypical example of this kind of paper is the line of work on “feature visualization” (Olah et al.,
2017), which introduced a new tool for inspecting networks, and revealed interesting qualitative
structures in trained networks. Our description of this as a scientific tool follows the presentation of
Olah et al. (2020).

11We leave “reasonable” up to interpretation, but we intend something closer to 20% than 99%.
12Note that Kepler’s laws were indeed “just” experimental conjectures at the time, since they preceded New-

tonian mechanics.
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4.3 REVIEWER GUIDELINES

Reviewing scientific work in a rapidly evolving field is challenging: there are no “short cuts” for re-
viewers, no “benchmarks” measuring scientific quality, not even universally accepted central ques-
tions for the field. Each paper must be evaluated on an individual basis. Nevertheless, we describe
here some general principles which can guide reviewers in the “science of ML” subject area. Only
a subset of these guidelines will apply for any particular paper, depending on the type of paper
(whether it introduces a conjecture, presents an experiment, etc). We focus on aspects of reviewing
which are specific to this subject area, omitting those aspects common to peer reviewing in general
(e.g. clarity of presentation, discussion of related work, etc).

Evaluating Surprise. Reviewers should be generous in evaluating whether an experiment that is
claimed to be “surprising” is in fact surprising. Our proposed definition of surprise involves deter-
mining if a “reasonable fraction” of experts in the community would disagree with the experimental
result. However, the reviewer is an individual, and cannot know the opinions of all experts in the
community. The reviewer should thus use their best judgement, and err on the side of generosity,
in evaluating such claims. Reviewers should not reject a paper simply because they are personally
not surprised. There is little harm in publishing an unsurprising experiment, but serious harm in
suppressing a surprising one.

We can also confirm surprise via the following hypothetical: If the overwhelming majority of experts
in the community could be convinced of both the true experimental conclusion, and its negation, then
the paper should be accepted, since it reduces inconsistency in beliefs.

Evaluate Only Stated Claims. Reviewers should evaluate only the paper’s stated claims, and in
context of the paper’s stated motivations. For example, a paper that attempts to formalize a folklore
intuition should not be rejected because it is “unsurprising,” when the paper never claimed surprise.
Similarly, a paper that presents a surprising experiment should not be criticized because it fails to
theoretically explain the experiment.

Justification and its Limitations. Claims should be justified reasonably, at the level of generality
that they are made. In experimental work, unlike theoretical work, it is often impossible or infeasible
to justify a claim fully rigorously.13 Rather, the best we can do is try to falsify our conjectures in
reasonable ways, and acknowledge the limitations of both our conjectures and our experimental
verification. Reviewers should check that authors have made reasonable effort to validate claims,
and have described potential limitations of their validation.

A reviewer can ask for more experiments, but should specify exactly which claim is unsupported by
the current experiments, and which specific new experiments would address this gap.

Precision and its Limitations. For papers which propose a quantitative conjecture, authors should
attempt to state the conjecture as precisely and formally as possible, including quantifiers over all
relevant quantities (e.g. sample size, distribution, etc). The gold standard of an empirical conjecture
is a “theorem without a proof”: a statement that is sufficiently formal to admit a proof. This is often
not possible in machine learning, for good reason: we do not yet have formal definitions of many
objects involved (such as the “natural distributions” of real data, and the “natural architectures”
used in deep learning). These definitional obstacles to formalism in deep learning are described
in Nakkiran (2021, Section 1.3.2). However, it is still possible to make scientific progress without
formal definitions— just as biologists can study “life” without precisely defining life. We propose
that authors attempt to state conjectures as precisely as possible, and acknowledge reasons for their
imprecision: is it due to known definitional obstacles, new definitional obstacles, or an incomplete
experimental understanding? Partial or informal conjectures are still scientifically valuable, and can
lead to greater precision in future work. However, it is important to establish where and why claims
are imprecise, to better understand the scope of our knowledge.

Theoretical Claims. Although this is primarily an experimental call-for-papers, we welcome
incorporating theoretical results as appropriate: theory and experiment are complementary tools in
scientific work. As with all theoretical work, reviewers should evaluate theory based on the insight

13This is because empirical conjectures will often involve quantifiers which can never be fully tested in finite
time. For example, we are rarely interested in a claim about one specific experiment, but rather in claims that
involving certain universal quantifiers (e.g. “for all sample sizes” or “for all sufficiently-large network widths”).
Such quantifiers cannot be verified by experiments alone.
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it brings (either in the result or the approach), and not based on the technical difficulty of proofs.
This is consistent with principles in the Theoretical CS community:

“Although non-trivial mathematics plays a significant role in our research, we are in the
business of understanding the nature of computation, not enumerating difficult-to-prove
theorems about it.” (Parberry, 1989).

Axes: Generality, Precision, and Justification. For most if not all types of scientific work,
increasing its generality, precision, and experimental justification will increase the strength of the
paper. An interesting behavior observed in a single experimental setting could be strengthened if it
were observed in a wide variety of settings. A conjecture about a particular learning method (e.g.
SGD on a given architecture) could be strengthened if it held for an entire family of methods. A
qualitative phenomena observed when training on one dataset (say, emergence of semantic feature
visualizations) could be strengthened if it occurred on many diverse datasets and sample sizes. A
claim about “most” training distributions could be straightened by specifying exactly which distri-
butions. And all claims supported by experimental validation are strengthened by more extensive
experiments, pushing the boundaries of the experimental claims. These overarching axes— of gen-
erality, precision, and justification— can be encouraged by reviewers to help improve the strength
of papers.

5 CONCLUSION

We highlighted a structural problem in ML publishing: the lack of support for experimental scientific
work that neither proves a mathematical theorem, nor improves a practical application. We discussed
the historical importance of experimental science, and presented a concrete proposal to encourage
it: a Best Paper Award for experimental scientific work at top ML conferences. To help implement
this proposal, we presented a candidate call-for-papers and reviewer guidelines for the award.
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